

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Техническая механика»

Л. Ф. РОДИОНОВ, В.Г. ПИДОДНЯ

ОСНОВЫ ДЕТАЛЕЙ МАШИН

Учебное пособие

Самара

Самарский государственный технический университет

2015

Печатается по решению редакционно-издательского совета СамГТУ

УДК 62-231.1

Родионов Л.Ф.

Основы деталей машин: учеб. пособие / Π . Φ . Родионов, В. Г. Пидодня. – Самара: Самар. гос. техн. ун-т, 2015. – 82 с.: ил.

ISBN 978-5-7964-1866-6

Рассмотрены конструкции и расчеты деталей и узлов, виды и расчет зубчатых, червячных, цепных и ременных передач, расчет валов и выбор подшипников качения, виды и выбор муфт, а также виды и расчет сварных и резьбовых соединений.

Пособие предназначено для студентов механических специальностей. Может быть, полезна инженерно-технических работникам

УДК 62-231.1

Рецензенты: заведующий кафедрой общетехнических дисциплин филиала ВУНЦ ВВС «ВВА» канд. техн. наук, доцент В.Я.Судаков;

Технический директор ООО «Кардан» А.Ю.Полубанов

ISBN 978-5-7964-1866-6

© Л.Ф.Родионов, В. Г. Пидодня 2015

© Самарский государственный технический университет, 2015

ПРЕДИСЛОВИЕ

Искусство конструирования машин насчитывает более 2000 лет. Многие элементы простейших машин сохранились до наших дней (рычаги, клинья, вороты, катки, зубчатые колёса).

Первоначально наука о расчёте и конструировании машин объединяла несколько дисциплин (теоретическая и прикладная механика, сопротивление материалов, детали машин, технология машиностроения и др.).

Самостоятельный курс под названием «Детали машин» был написан профессором Петербургского политехнического института В.Л.Кирпичевым в 1881 году. Он справедливо считается основоположником курса деталей машин. Среди его учеников и сотрудников встречаются имена крупных российских ученых таких, например, как Л.В. Ассур.

«Отец русской авиации» профессор Н.Е.Жуковский оставил глубокие исследования в области машиностроения. Им впервые изучен и решён вопрос о распределении *нагрузки* между витками гайки, исследовано явление упругого скольжения ремня и выполнены исследования в области трения, разработаны теоретические основы авиации.

Глубокие научные исследования в области проектирования сварных конструкций и технологии сварки принадлежат академику Е.О.Патону, который развил изобретение дуговой сварки русскими инженерами Н.Г.Славяновым и Н.Н.Бернадосом.

Академик Н.П.Петров в 1883 году в работе «Трение машинах и влияние на него смазывающей жидкости» изложил гидродинамическую теорию трения и смазки. На этой теории базируются все современные расчеты подшипников скольжения.

Великий математик академик Леонард Эйлер заложил в 18 веке основы теории зацепления, предложил эвольвентное зацепление,

вывел классическое соотношение между ветвями гибкой нерастяжимой нити, переброшенной через барабан.

Разработки в области деталей машин продолжаются и в настоящее время. Наибольший вклад вносят ученые МВТУ им. Н.Э.Баумана.

ВВЕДЕНИЕ

Классификация деталей машин.

Каждая машина состоит из узлов и деталей. Детали могут быть типовыми или специфичными. Типовые детали применяются для машин разных типов и назначения (детали крепежа, валы и оси, зубчатые колёса, шкивы и т.д.). Специфичные детали соответствуют только одному классу машин (шатуны коленчатые валы, лопатки турбин и др.).

Типовые детали или детали общего назначения разделяются на следующие виды:

- 1. Детали разъёмных и неразъёмных соединений;
- 2. Валы и оси;
- 3. Опоры валов (подшипники и подпятники);
- 4. Муфты;
- 5. Детали передач (фрикционных, ременных, цепных, зубчатых и червячных).

Основные критерии

работоспособности и расчета деталей машин.

К основным критериям работоспособности деталей относятся:

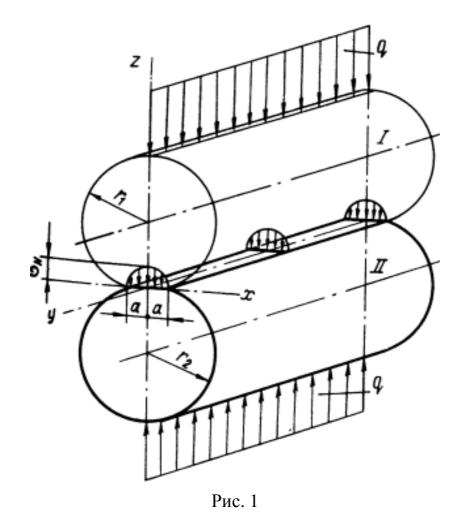
- 1. Прочность (статическая прочность и усталость);
- 2. Жёсткость (изменение формы и размеров под нагрузкой): Износостойкость (изменение формы и размеров под действием трения);
- 3. Коррозионная стойкость (сопротивление агрессивным средам);
 - 4. Теплостойкость;
 - 5. Виброустойчивость.

Работоспособность деталей зависит от выбранных критериев для конкретных условий работы. Основными условиями работы детали являются нагрузки и скорость.

Контактные напряжения

Контактными называются напряжения, возникающие в месте контакта двух тел при сжатии, когда размеры площадки контакта малы. Контактные напряжения являются критерием работоспособности зубчатых и червячных передач, подшипников качения и других деталей.

Задачу о напряженном состоянии в зоне контакта решил немецкий ученый Герц.


При сжатии двух цилиндров, под действием удельной нагрузки q линейный контакт переходит в контакт по площадке как показано на рис.1, при этом возникают нормальные напряжения $\sigma_{H\bullet}$

$$\sigma_{H} = \sqrt{\frac{q}{\rho_{np}} \frac{E_{1}E_{2}}{\pi \left[E_{1} \left(1 - \mu_{2}^{2}\right) + E_{2} \left(1 - \mu_{1}^{2}\right)\right]}}.$$

Для конструкционных металлов Пуассона можно принять $\mu_1 = \mu_2 = 0,3$. Получим:

$$\sigma_H = 0.418 \sqrt{q E_{\pi p}/\rho_{\pi p}}.$$
 $E_{\pi p} = 2E_1 E_2/(E_1 + E_2),$
 $1/\rho_{\pi p} = 1/r_1 \pm 1/r_2.$

где E_{np} и ρ_{np} – приведенные модуль упругости и радиус кривизны; E_{1} , E_{2} , r_{1} , r_{2} , модули упругости и радиусы цилиндров.

Знак плюс соответствует наружному касанию; плюс – внутреннему. При внутреннем касании σ_{H} имеет меньшее значение.

При проектировании применяются два вида расчетов: проектный (упрощенный, предварительный) и проверочный (уточнённый).

При проектном расчёте некоторыми неизвестными параметрами задаются. Поэтому иногда приходится выполнять несколько вариантов расчетов.

При проверочном расчете определяются фактическая прочность или уточняются размеры конструкции.

Глава 1. МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ

1.1. Понятие механической передачи

Механическая передача — это механизм преобразующий параметры двигателя в параметры исполнительного механизма машин (рис.1.1a).

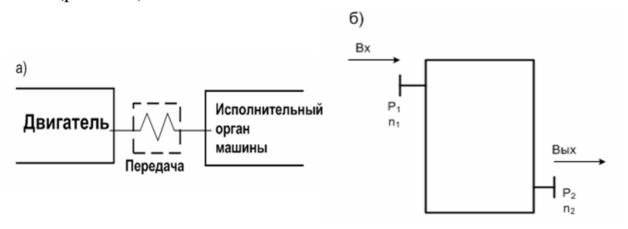
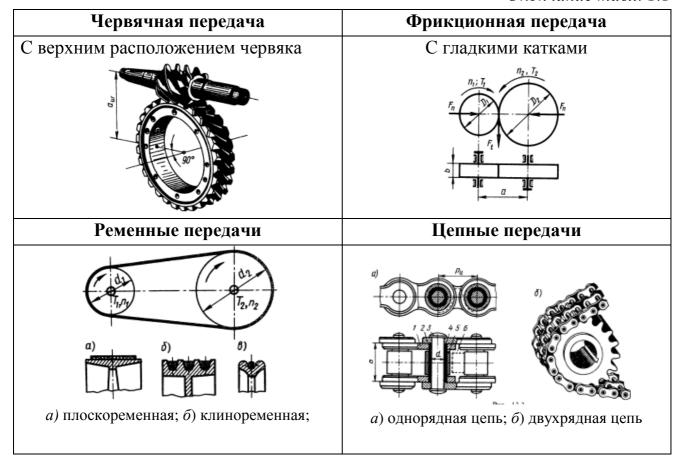


Рис.1.1

В каждой передаче имеются два основных вала: входной и выходной или ведущий и ведомый (рис. 1.1б)

Каждая передача имеет основные и производные характеристики.


Основные характеристики: **мощность** на входе и выходе P_1 и P_2 , Вт; **частота вращения** n_1 и n_2 , мин⁻¹; **угловая скорость** ω_1 и ω_2 , сек; **крутящий момент** T_1 и T_2 , Нм.

К производным характеристикам относятся: коэффициент полезного действия (к.п.д.) η =P2/P1 передаточное отношение i= ω_1/ω_2 = $n1/n_2$.

Виды механических передач представлены в таблице 1.1.

Виды механических передач

Цилиндрические прямозубые передачи			
Внешнее зацепление	Внутреннее зацепление	Реечное зацепление	
	To the state of th		
Внешнее косозубое	Шевронное зацепление	С круговым зубом	
		(Новикова)	
Конические зубчатые передачи			
Прямозубая	Косозубая	С круговыми зубьями	
Передачи с перекрещивающимися осями			
Зубовинтовая пер	едача Гі	ипоидная передача	

1.2. Зубчатые передачи

Зубчатые передачи отличаются компактностью, высоким КПД, долговечностью и надежностью. Недостатком является шум при работе.

Классификация

- а) по взаимному расположению валов:
 - параллельное (цилиндрические);
 - пересекающиеся (конические);
 - скрещивающиеся (винтовые).
- б) по профилю зуба:
 - с эвольвентным зацеплением;
 - с зацеплением М.Л.Новикова.

- в) по конструктивному исполнению:
 - открытая передача;
 - закрытая передача.
- г) по виду зацепления:
 - внешнее;
 - внутреннее.
- ∂) по расположению зубьев:
 - прямозубые;
 - косозубые;
 - шевронные.

1.3.Основные геометрические и кинематические параметры зубчатых передач

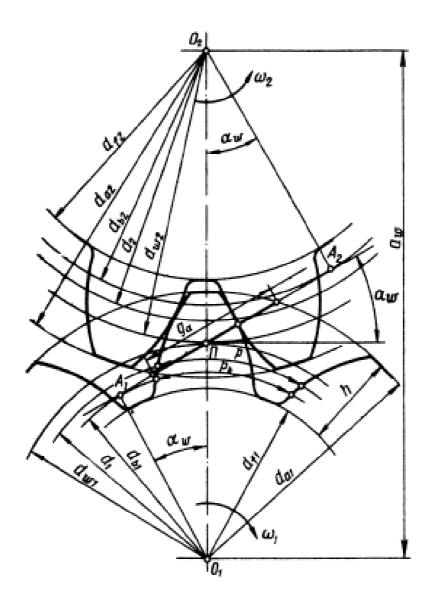
Меньшее из пары колес называется шестерней (индекс 1) ,а большее колесом (индекс 2). Все геометрические параметры обозначаются с индексами:

 δ – основная окружность:

w – начальная окружность;

а – окружность вершин;

f – окружность впадин.


Делительная окружность - без индексов.

К геометрическим параметры зубчатой передачи указаны в рис.1.2.

Одним из основных параметров передачи является передаточное число u, значение которого опредляетс я из выражения:

$$u = \frac{d_2}{d_1} = \frac{z_2}{z_1} \tag{1.1}$$

где: u– передаточное число; p –шаг делительный окружной.

Рис. 1.2

 d_1 и d_2 - делительные диаметры; $d_{\rm a1}$ и $d_{\rm a2}$ -диаметр вершин; $a_{\rm w}$ - межосевое расстояние; z_1 и z_2 - число зубьев шестерни и колеса;

 $d_{w1} \ u \ d_{2w2}$ - начальные диаметры; $d_{\rm f} \ u \ d_{\rm f2}$ - диаметр впадин; m - модуль;

p - делительный окружной шаг;

 α - угол профиля

Значения геометрических параметров прямозубых передач

Делительный диаметр: $d_{1,2} = mz_{1,2}$; Диаметр вершин: $d_{a1,2} = d_{1,2} + 2m$;

Диаметр впадин: $d_{f12}=d_{1,2}-2.5m$;

Межосевое расстояние

$$a_w = (d_1 + d_2)/2 = d(1+u)/2 = m(1+u/2) = m(z_1+z_2)/2$$

Значения геометрических параметров косозубых передач

Окружной модуль – $m_t = pn/\pi = m_n/\cos\alpha$ -

Окружной шаг – $p_t = p_n/cos\beta$ -;

Угол наклона зуба – $\beta = 8...18^{\circ}$ –;

Делительный диаметр: $d = m_t z$

Диаметр вершин: $d_a = d + 2m_n$;

Диаметр впадин: $d_f = d - 2.5 m_n$;

Угол зацепления $(20^{\circ}) - \alpha$;

Межосевое расстояние:

$$a_w = d_1 + d_2/2 = m_t (z_1 + z_2)/2 = m_t z_{\Sigma}/2$$

1.4. Расчет на контактную прочность цилиндрической прямозубой передачи

В основе расчёта — формула Герца Подставив в формулу параметры зубчатой передачи, учитывая действующие нагрузки и свойства материалов, получим формулу расчета на контактную прочность закрытой прямозубой цилиндрической передачи

$$\sigma_{H} = 1.18\sqrt{\frac{\frac{E_{np}T_{1}K_{H}}{(d_{w1}^{2}b_{w}\sin 2\alpha)(\psi_{ba})}(u\pm 1)}{u}} \leq [\sigma_{H}]$$
(1.2)

где: $Enp = 2,1 \cdot 10^5 \text{ МПа};$

 T_{I} – крутящий момент шестерни, Нм;

Кн – коэффициент концентрации нагрузки по контактным напряжениям;

 $d_{w_1}^2$ - диаметр начальной окружности шестерни;

 b_w - ширина зуба шестерни;

u — передаточное число;

- (-) внешнее зацепление;
- (+) внутреннее зацепление.

Проектный расчет закрытой прямозубой цилиндрической передачи

Критерием работоспособности закрытой зубчатой передачи является условие контактной прочности: $\sigma_H \leq [\sigma_H]$

При проектном расчете определяется главный параметр передачи – межосевое расстояние ($a_{\rm w}$):

$$a_{w} = K_{a}(u+1)\sqrt[3]{\frac{T_{2}K_{h\beta}}{[\boldsymbol{\sigma}_{h}]u^{2}\boldsymbol{\psi}_{ba}}}$$
(1.3)

где: ψ_{ba} - коэффициент ширины колеса относительно межосевого расстояния;

 T_2 – момент на ведомом колесе.

 $K_a = 49.5$ для прямозубых передач;

Ка =43 для косозубых и шевронных.

Проектный расчет на контактную прочность цилиндрической косозубой и шевронной передачи

Такие передачи имеют большую несущую способность, чем прямозубая. Расчетная формула имеет вид:

$$\sigma_{H} = 1.18 Z_{H\beta} \sqrt{\frac{ET_{1}K_{H}}{d_{ud}^{2}b_{u}\sin 2\alpha}} \frac{(u+1)}{u} \leq [\sigma_{H}]$$

$$(1.4.)$$

где: $Z_{H\beta}$ – коэффициент повышения прочности косозубых передач по контактным напряжениям.

Проектный расчет закрытой косозубой и шевронной передачи:

$$a \approx 0.75 \ (u+1) \sqrt[3]{\frac{E_{np} T_2 K_{H\beta}}{[\sigma_H]^2 u^2 \psi_{ba}}}$$
 (1.5)

1.5.Силы, действующие в зацеплении цилиндрической передачи

Прямозубая передача

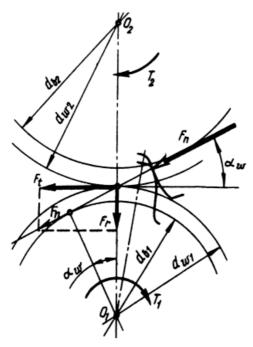


Рис. 1.3 Силы в прямозубой передаче

 F_n - нормальная сила;

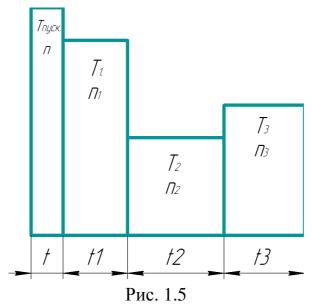
 $Ft = 2T_I/d_{wI} \approx 2T_I/d_I$ – окружная сила;

 $F_r \approx F_t \ tg\alpha_w; \ F_n = F_t/\cos\alpha_w$ радиальная сила

Косозубая передача β

Рис.1.4.Силы в косозубой передаче

 F_n —нормальная сила (раскладывается на три составляющие — Ft, Fa, и Fr);


 $F_t = 2T_1/d_1$ – окружная сила;

 F_a = F_t осевая сила;

 $F_r = F_t tg\alpha_w = F_r tg\alpha_w / \cos\beta -$ радиальная сила.

1.6. Допускаемые контактные напряжения при расчёте на усталость

При переменном режиме нагрузки расчет производится по эквивалентной нагрузке соответствующей усталостному воздействию (Рис. 1.5.).

Вначале определяется эквивалентное время работы:

$$t_{\text{3KB}} = t_1 + t_2(T_1/T_2) + t_3(T_3/T_1),$$

затем определяется эффективное число нагружений:

$$N$$
э = 60 n_2 T э C

где: n_2 - частота вращения вала, об/мин;

С – число зацеплений зубчатого колеса.

Полученное значение $N_{\mathfrak{I}}$ сравнивается с кривой усталости. На рис. 1.6 представлена кривая усталости, построенная в полулогарифмических координатах.

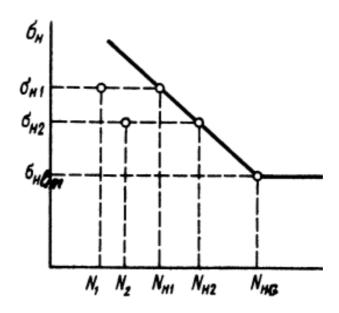


Рис. 1.6

 Γ де N – число циклов;

 σ_H – максимальное напряжение цикла;

 σ_{HO} – предел выносливости.

Значение $N_{\scriptscriptstyle 3}$ $N_{\scriptscriptstyle HO}$ соответствует длительной работе передчи. В этом случае допускаемое напряжение равно:

$$[\sigma_{\rm H}] = (\sigma_{HO} / S_H) K_{HL}, \qquad (1.6)$$

где: S_H – коэффициент безопасности;

$$K_{\scriptscriptstyle HL} = \sqrt[6]{rac{N_{\scriptscriptstyle HO}}{N_{\scriptscriptstyle \ni}}}$$
 – коэффициент долговечности.

1.7.Допускаемые напряжения изгиба при расчёте цилиндрических зубчатых передач

Допускаемые напряжения изгиба определяются также из того условия, что переменный режим заменяется на постоянный.

$$[\sigma_F] = (\sigma_{F0} / S_F) K_{FC} K_{FL}$$

$$(1.7)$$

где: σ_{F0} – предел выносливости зубьев по напряжениям изгиба;

$$S_F \approx 1,55...1,75;$$

 K_{FC} – коэффициент нагрузки (при односторонней - K_{FC} =1;

при реверсивной - K_{FC} = 0,7...0,8); K_{FL} – коэффициент долговечности.

Расчет цилиндрических зубчатых передач на изгиб

Закрытая прямозубая передача

Зуб рассматривается как балка, нагруженная при вершине зуба силой F_n (рис.1.7)

У корня зуба возникают максимальные напряжения изгиба и концентрация напряжений. Расчет ведется по наибольшим местным напряжениям:

$$\sigma_F = Y_F F_t K_F / (b_W m) \le [\sigma_F], \tag{1.8}$$

где: Y_F - коэффициент формы зуба

 $F_t = 2T_I/d_I$ – окружная сила;

 K_{F-} коэффициент расчетной нагрузки;

 b_W - длина зуба.

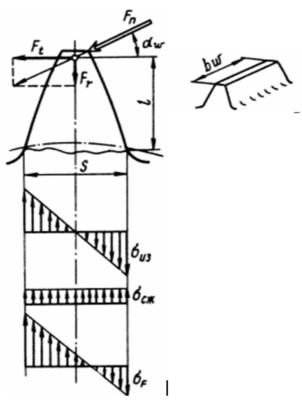


Рис. 1.7

Косозубая передача

В закрытой косозубой передаче расчет ведётся по формуле:

$$\sigma_F = Y_F Z_{F\beta} Ft K_F / (b_W m_n) \le [\sigma_F]$$
 (1.9)

где: $Z_{F\beta} = K_{F\alpha} Y_{\beta}/\varepsilon_{\alpha}$ - коэффициент повышения изгибной прочности косозубых передач;

 $K_{F\alpha}$ – коэффициент неравномерности нагрузки;

 Y_{β} – коэффициент повышения нагрузки от угла подъема зуба;

 Y_F - \bot коэффициент формы зуба.

 ε_{α} –коэффициент перекрытия

Для определения коэффициента Y_F вводится понятие эквивалентного колеса с прямыми зубьями.

Эквивалентное колесо образуется нормальным к зубу сечением рассчитываемого колеса (рис1.8).

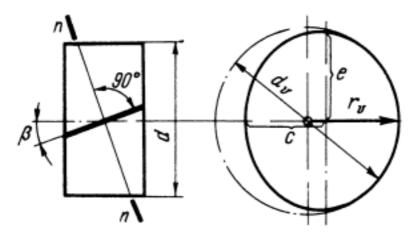


Рис. 1.8

Сечение образует эллипс с полуосями $e = r/cos\beta$ и c=r

Зубья косозубого колеса в сечении по нормали соответствуют зубьям эквивалентного прямозубого колеса диаметром и числом зубьев:

$$d_v = d/\cos^2 \beta \tag{1.10}$$

$$Z_{v} = d_{v}/m_{n} = z/\cos^{3}\beta \tag{1.11}$$

1.8. Конические зубчатые передачи

Конические передачи применяются для передачи вращательного движения на валы, оси которых пересекаются под углом.

Конические колеса имеют три вида зубьев: прямые, косые (тангенциальные) рис1.9 и круговые рис1.10.

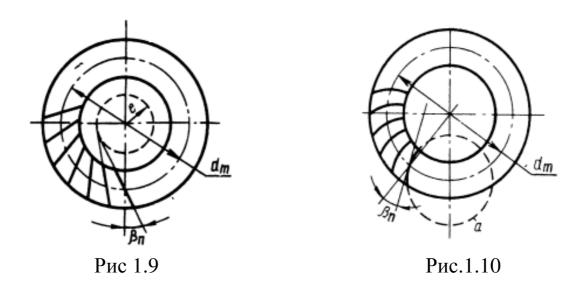


Схема прямозубой конической передачи, оси которой пересекаются под углом $\epsilon = 90^{\rm o}$, представлена на рис.1.11.

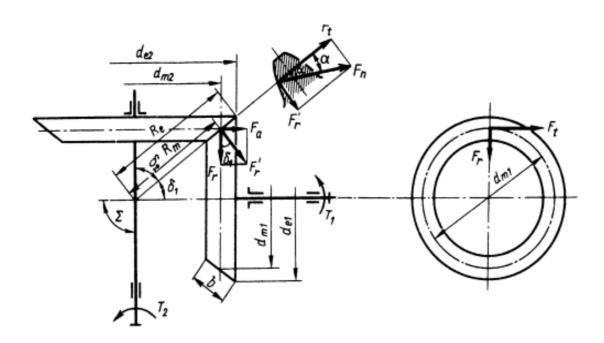


Рис. 1.11

В конических передачах в качестве геометрических параметров выступают начальные и делительные конусы. Размеры конических определяют по дополнительному конусу. Образующие передач конусов перпендикулярны соответствующим дополнительных (Рис.1.12). Сечение зубьев конусов основных дополнительным торцовым сечением, которые ΜΟΓΥΤ быть конусом называют внешним, внутренним и средним торцовым сечением.

Размеры в торцовом сечении обозначают индексом e, например внешний делительный диаметр d_e , торцовое – с индексом t, в среднем сечении – с индексом m.

Размеры по внешнему торцу указывают на чертежах. Конические зубчатые передачи имеют следующие геометрические зависимости:

Внешнее конусное расстояние; $R_e = R_m + 0.5b$;

Внешний делительный диаметр - $d_{e1.2} = m_{te} Z_{1.2}$;

Внешний диаметр вершин зубьев - $d_{ae} = d_{e1.2} + 2m_{te}\cos\delta_I$; Передаточное число конической передачи – $u = d_2 / d_1 = z_1 / z_2 = \sin\delta_2 / \sin\delta_1$

Силы в зацеплении

По нормали к зубу действует нормальная сила F_{n} . Она раскладывается на три составляющих (рис. 1.11):

окружную – $F_t = 2T_I/d_{mI}$; радиальную – $F_r = F_t t g \alpha \cos \delta_{I}$; осевую $Fa = F_t$

Для колеса направление сил противоположно т.е. F_{a2} как F_{r1} и, соответственно, Fr_2 как F_{a1} .

Расчет прямозубой конической передачи на контактную прочность

Проверочный расчёт производится по формуле:

$$\sigma_H = 1,18 \sqrt{\frac{E_{\pi p} T_1 K_H}{9_H d_{m1}^2 b \sin 2\alpha} \left(\frac{\sqrt{u^2 + 1}}{u}\right)} \leqslant \left[\sigma_H\right], \tag{1.12}$$

где $\vartheta_{\rm H} = 0.85$ опытный коэффициент.

При проектном расчете определяется внешний делительный диаметр:

$$d_{e2} = 1.7 \sqrt[3]{\frac{E_{np}T_2uK_{H\beta}}{9_H[\sigma_H]^2(1 - K_{be})K_{be}}},$$
(1.13)

где $K_{be} = b_w/R_e$ коэффициент ширины зубчатого венца относительно R_e .

1.9. Материалы и термообработка, применяемые в зубчатых передачах

Критерием работоспособности зубчатых передач является условие контактной прочности. Контактная прочность зависит от твердости материала. Твёрдость сталей зависит от марки материала и термообработки. Стальные колёса разделяют на две группы: нормализованные или улучшенные, твёрдостью ≤ 350 НВ и с закалкой твердостью ≥ 350 НВ. Твёрдость шестерни должна быть на 10-15 единиц для приработки пары. Широкое применение нашли такие виды термообработки как поверхностная закалка, цементация, нитроцементация и азотирование.

1.10. Червячные передачи

Червячные передачи - это передачи с перекрещивающимися валами (Рис. 1.13). Они работают по принципу винтовой пары. К преимуществам относятся компактность и большие передаточные числа. К недостаткам – низкий КПД, нагрев при работе, применяются дорогостоящие материалы.

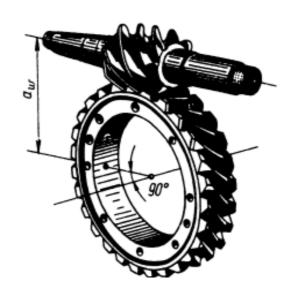
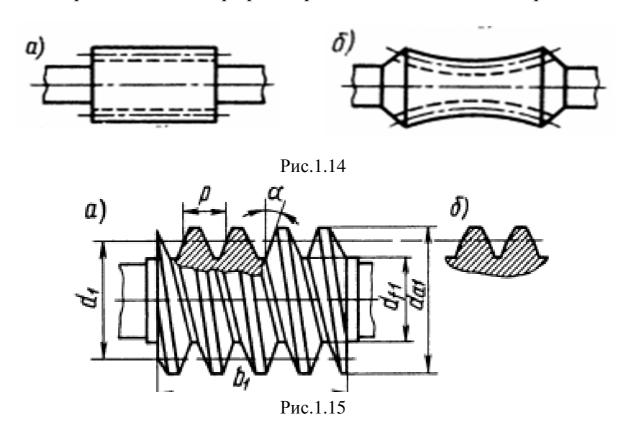



Рис 1.13

Классификация червячных передач

- 1. По форме червяка:
 - с цилиндрическим червяком (рис.1.14 а);
 - с глобоидным червяком (рис 1.14б);
 - с прямолинейным профилем резьбы (рис.1.15 а);
 - с криволинейным профилем резьбы в осевом сечении (рис.1.15 б).

- 2. По направлению витков: с правым или левым червяком.
- 3. По числу заходов червяка: Z=1; Z=2; Z=4.
- 4. По расположению червяка: с нижним, верхним и боковым расположением.

Геометрические параметры

В червячной передаче различают диаметры начальных цилиндров червяка и колеса – d_{wI} и d_{w2} ; делительные диаметры- d_I и d_2 (Рис 1.16, Рис1.17).

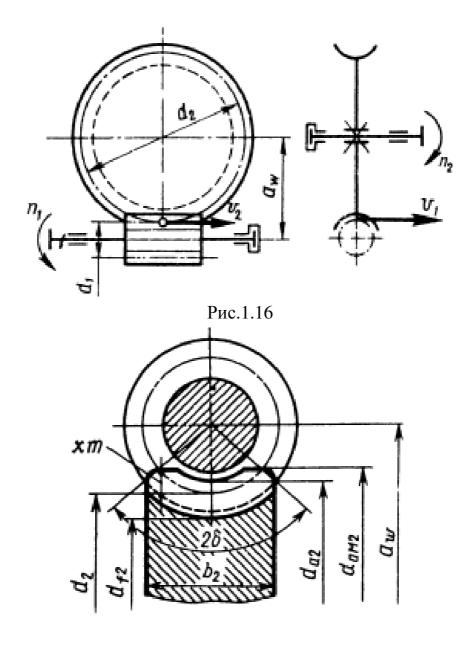


Рис 1.17

Примечания к рисунку:

делительный диаметр червяка и колеса: d_1 =qm; d_2 = mz_2 .

диаметр вершин червяка и колеса: d_{aI} = d_{I} +2m ; d_{2} +2m.

диаметр впадин: d_{fI} = d_{I} - 2.4m; d_{f2} = d_{2} - 2.4m.

максимальный диаметр колеса: $d_{an2} \le d_{a2} + 6m/(z_1 + 2)$.

длина нарезанной части червяка: $b_1 \ge (C_1 + C_2 Z_2)m$, где $C_1 = 11$, $C_2 = 0.06$.

ширина колеса: b≤0.75 d_{al} .

межосевое расстояние: $a_w = m(q + z_2)/2$.

угол подъема винтовой линии червяка: Z_1/q .

B этих значениях m – модуль; q – коэффициент диаметра червяка.

Материалы червячной пары

Червяки изготавливаются из углеродистых и легированных сталей, с последующей термообработкой значительной твёрдости.

Червячные колеса изготавливаются из антифрикционных металлов и сплавов (чугуны, латуни, бронзы).

Выбор материала зависит от относительной скорости скольжения между витками червяка и зубьями колеса ($V_{\rm ck}$):

- при $V_{ck} \le 2$ м/с применяются чугуны;
- при $V_{c\kappa} \le 5$ м/с –латуни и безоловянистые бронзы;
- при $V_{c\kappa}$ 5 м/с применяются оловянистые бронзы.

Силы в зацеплении

Схема сил в червячной передаче (рис 1.18)

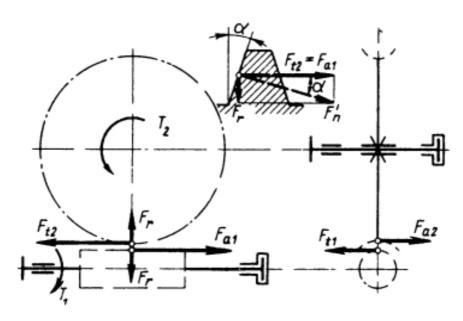


Рис.1.18

Окружная сила червяка F_{tl} , равная осевой силе колеса F_{a2}

$$F_{tl} = F_{a2} = 2T_l/d_l (1.14)$$

Окружная сила колеса F_{t2} , равная осевой силе червяка F_{al} :

$$F_{t2} = F_{al} = 2T_2/d_2 \tag{1.15}$$

Радиальная сила

$$F_r = F_{t2} tg\alpha \tag{1.16}$$

Нормальная сила

$$F_n = F_{t2}/(\cos\alpha\cos\gamma) \tag{1.17}$$

Расчет червячной передачи на контактную прочность

Основой расчёта является формула Герца (см. стр 6), которую после преобразования можно представить в виде:

$$\sigma_{H} = \frac{170}{10^{3} Z_{2} / q} \cdot \sqrt{\left(\frac{Z_{2} / (q+1)}{\alpha_{w}}\right)^{3} K_{H} \cdot T_{2}} \leq [\sigma_{H}]$$
(1.18)

где: σ_H – рабочее контактное напряжение, МПа;

 $Z_{2\,-}$ число зубьев червячного колеса;

q – коэффициент диаметра червяка;

Т- крутящий момент на валу колеса, Нм;

 a_w – межосевое расстояние, мм;

 K_{H} – коэффициент нагрузки;

 $[\sigma_H]$ - допускаемое контактное напряжение, МПа

Проектный расчет червячной передачи

Определяется главный параметр червячной передачи — межосевое расстояние a_w :

$$a_{w} = \left(\frac{Z_{2}}{q} + 1\right) \cdot \sqrt[3]{\left(\frac{170 \cdot q}{\left[\sigma\right]_{H} Z_{2} \cdot 10^{3}}\right)^{2} K_{H} \cdot T_{2}},$$

$$(1.19)$$

Проверочный расчет передачи осуществляется из условия прочности на изгиб:

$$\sigma_{u} = \frac{Y_{b} \cdot F_{2} \cdot \cos \gamma}{1.3 \cdot m^{2} \cdot q} \le \left[\sigma_{b}\right] \tag{1.20}$$

где: σ_u – рабочее напряжение изгиба, МПа;

 Y_u –коэффициент прочности зуба;

 F_2 - окружное усилие на червячном колесе

Материалы и допускаемые напряжения

Червяки изготавливают из легированных или углеродистых сталей с последующей термообработкой и шлифованием витков. Материал колёс зависит от скорости скольжения v_s .

При
$$v_s \le 2\frac{M}{c}$$
 применяются чугуны

При $v_s \le 5\frac{M}{c}$ применяются безоловянистые бронзы и латуни При v_s применяются оловянистые бронзы.

Тепловой расчет червячной передачи

Температура масла в редукторе должна быть меньше допускаемой температуры

Иначе говоря тепловая мощность Φ работающего редуктора не должна быть больше мщности теплоотдачи Φ_I

$$\Phi = P_1 \cdot (1 - \eta) \le \Phi_1 = K \cdot (t_1 - t_0) A \tag{1.21}$$

где: P_I – мощность на входном валу (червяке);

К- коэффициент вентиляции;

A – площадь поверхности охлаждения;

 t_{1} и t_{0} - температура масла и окружвющей среды соотвественно

1.11. Ременные передачи

Применяется для передачи движения звеньями с гибкой связью. В передаче создаётся сила трения за счет натяжения ремня. В результате появляется сила нормального давления на шкивы.

Ременная передача состоит из двух и более шкивов и ремней (см. глава 1 рис.1.1), имеющих различные сечения (плоские, клиновые, круглые, зубчатые и т.д.).

Окружные скорости на шкивах определяются соотношением: $v = \pi dn/60$.

В ременной передаче всегда присутствует упругое скольжение, т.е. v_2 меньше v_1 поэтому:

$$v_2 = v_I(1-\varepsilon), \tag{1.22}$$

где ε – коэффициент скольжения.

При нормальных рабочих нагрузках ε =0.01...0.2, поэтому на практике принимают:

$$i \approx d_2 / d_1$$
 (1.23)

Классификация ременных передач

Ременные передачи классифицируют:

- а) по способу натяжения: простые, натяжные, самонатяжные;
- б) по сечению и ремня: плоские, клиновые, зубчатые.
- в) в зависимости от материалов ремней разделяются на прорезиненные, тканевые, шерстяные, кожаные, полиамидные, кордшнуровые.

Силовые зависимости ременной передачи

На рис. 1.19 показаны нагружение ветвей ремня. нагружение ремня равно нулю T_I =0 (рис. 1.19а). На ремни действует нагрузка предварительного натяжения F_0 . Нагружение ремней возникает под действием нагрузки $T_1 \ge 0$: натяжение ведущей F_I и ведомой ветви F_2 (рис. 1.19б).

Если F=2T/d то поусловию равновесия шкива:

$$T_1 = 0/5d(F_1 - F_2)$$
.

В итоге имеем:

$$F_1 + F_2 = 2F_0$$
; $F_1 = F_0 + F_2/2$; $F_2 = F_0 - F_1/2$ (1.24.)

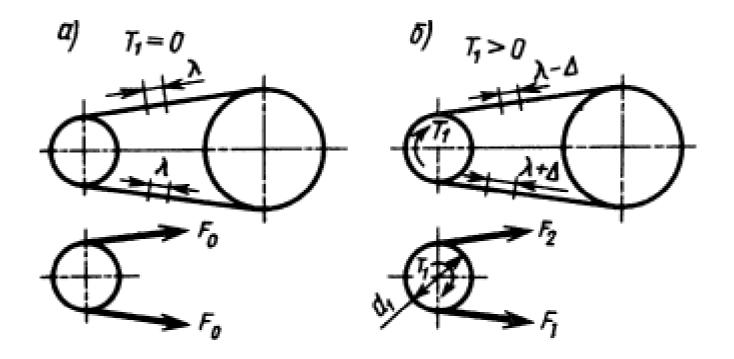


Рис.1.19

Наибольшие напряжения создаются в ведущей ветви:

напряжение от предварительного натяжения - $\sigma_0 = \sigma_1$ - σ_2 ; полезное напряжение ведущей ветви - $\sigma_1 = F_1/A$; полезное напряжение ведомой ветви - $\sigma_2 = F_2/A$; напряжение от силы веса ремня - $\sigma_v = F_v/A = \rho v^2$; напряжение изгиба ремня - $\sigma_u = \varepsilon E$.

Суммарное напряжение в ведущей ветви при набегании ремня на малый шкив вычисляется:

$$\sigma_{max} = \sigma_1 + \sigma_v + \sigma_u = \sigma_0 + 0/5 \sigma_1 + \sigma_v + \sigma_u \tag{1.25}$$

Эпюра распределения напряжений по длине ремня изображена на рис.1.20.

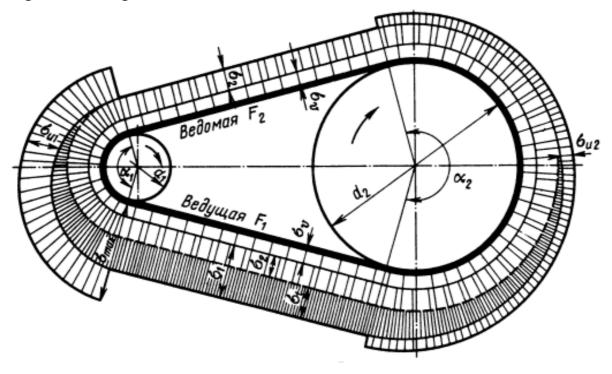


Рис.1.20.

Расчёт ремней на долговечность

Важной характеристикой ременной передачи является тяговая способность. Она зависит от сцепления ремня со шкивом. Тяговая способность определяется экспериментально. При этом составляются кривые скольжения и КПД передачи (Рис.1.21).

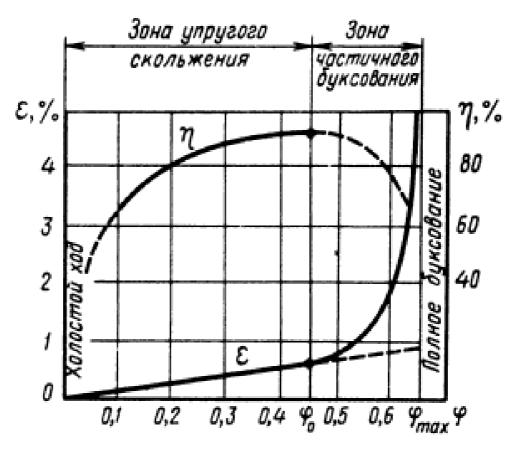


Рис.1.21

По оси ординат отсчитывают относительное скольжение ε и КПД, а по оси абсцисс — нагрузку (коэффициент тяги) φ :

$$\varphi = F1/(2F0) = \sigma 1/(2 \sigma_0)$$
 (1.26)

Критерием работоспособности ременной передачи является тяговая способность ременной передачи. Сечение ремня выбирают по графику в соответствии с передаваемой мощностью и частотой вращения малого шкива (рис.1.22). По графику выбирают номинальную мощность, передаваемую одним ремнём. Выбирают диаметр малого шкива d_{pl} (стандарт). Определяют мощность, предаваемую одним ремнём и силу предварительного натяжения Определяют длину ремня и межосевое расстояние.

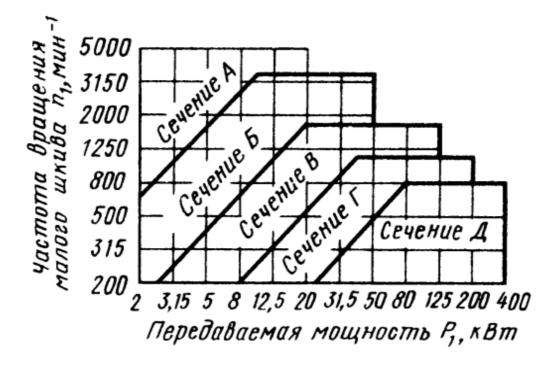


Рис 1.22

Предварительное межосевое расстояние $a=d_2$. Длина ремня и межосевое расстояние:

$$l = 2a + 0.5\pi (d_1 + d_2) + (d - d)/(4a)$$
(1.27)

$$a = \{2l - \pi(d_1 + d_2) + \sqrt{2l - \pi(d_1 + d_2)}\}^2 - 8(d_2 - d_1)$$
(1.28)

1.12. Цепные передачи

Цепная передача состоит из звездочек и цепи. Они передают большие нагрузки, чем ременные передачи. Основными характеристикам цепных передач являются

- 1. Мощность: P = F v
- 2. Скорость цепи: $v = n z p_u / 60$
- 3. Передаточное отношение: $i=n_1/n_2=z_2/z_1$
- 4. Межосевое расстояние; $a_{min} = (d_1 + d_2) / 2 + (30...50)$

Проектный расчёт цепной передачи

Критерием работоспособноси цепной передачи является давление в шарнирах:

$$P=F/(B d) \le [p] \tag{1.29}$$

Расчет сводится к тому, чтобы при заданных P, n_1 u i определить p_{ψ} , z и a Проектный расчёт производится в следующей последовательности. По рекомендации выбирается число зубьев малой звёздочки z_1 и рассчитывается число зубьев ведомой z_2 .

- 1. Назначается межосевое расстояние из условия $a = (30...50)p_u$
- 2. Определяется расчётная мощность $P_p = P_I K_{\ni} K_z K_n \leq [P_p]$
- 3. По ГОСТ выбирается цепь
- 4. Длина цепи округляется до целого числа.

$$L_p = 2a/p_u + (z_1 + z_2)/2 + [(z_2 - z_1)/2\pi]^2 p_u/a$$

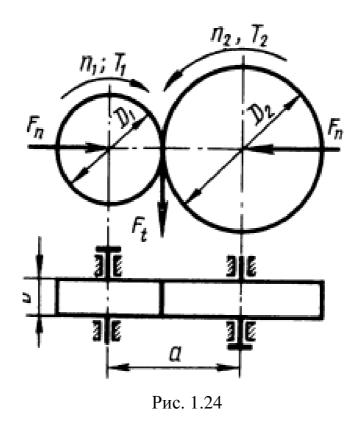
5. Уточняется межосевое расстояние

$$a = \frac{p_u}{4} \left[L_p \frac{z_1 + z_2}{2} + \sqrt{(L_p \frac{z_1 + z_2}{2})^2 - 8(\frac{z_2 - z_1}{2\pi})^2} \right]$$

6. Определяются диаметры звёздочек $d = p_u / sin(\pi/z)$

1.13. Фрикционные передачи

Критерием раттоспособности фрикционных передач является условие контактной прочности: $\sigma_{\scriptscriptstyle H} \! \leq [\sigma_{\scriptscriptstyle H}]$


Во фрикционных передачах движение передается силами трения под действием сил прижатия катков. Они просты по конструкции, обеспечивают бесшумность и плавность работы. Применяются в вариаторах.

Таким образом, фрикционные передачи могут иметь передаточное число i=const и в вариаторах i=Var

По геометрии катков фрикционные передачи делятся на конические (рис. 1.23) цилиндрические, (рис 1.24), торовые и др.

Рис. 1.23

Передаточное число цилиндрической фрикционной передачи:

$$I=n_1/n_2=d_2/d_1(1-\varepsilon) \tag{1.30}$$

В силовых передачавх ε не учитывается. Для нормальной работы передачи необходивмо сблюдение условия: $F_t \leq F$,

где $F_{\rm t}$ – окружная сила; F = $F_n f$ - сила трения.

Глава 2 ВАЛЫ И ОСИ

Валы передают крутящий момент и одновременно испытывают изгиб. Таким образом, вал работает на изгиб икручение,

Оси, в отличие от валов не передают крутящий момент и работают только на изгиб.

Расчет валов выполняют в два этапа:

- проектный (выбор диаметров ступеней вала);
- проверочный расчет вала на изгиб и кручение.

2.1. Проектный расчет валов

Прочность вала на кручение определяется выражением:

$$\tau = \frac{T}{W_0} = \frac{T}{0.2 \cdot d^3} \le [\tau] \tag{2.1}$$

Откуда диаметр входного конца вала d_1

$$d_1 = \sqrt[3]{\frac{T_1}{0,2[\tau]}} \tag{2.2}$$

где: *[т]*=10-20 МПа

Выразив крутящий момент Т через мощность Р и частоту вращения n получим выражение $d_1 = (13-16)\sqrt{P/n}$

Полученный диаметр округляется по стандартному ряду. Диаметры последующих ступеней также округляются по стандартному ряду.

В случае соединения вала редуктора с валом двигателя через муфту d_1 определяется из условия: $d_1 = (0.8...1) d_{908}$.

2.2. Расчет валов на изгиб и кручение (проверочный расчет)

Расчет валов выполняется при следующих допущениях:

- нагрузки рассматриваются как сосредоточенные;
- опоры, воспринимающие радиальные нагрузки, считаются подвижными;
- опроы, воспринимающие радиальные и осевые нагрузки, считаются неподвижными.

Рассмотрим на примере порядок расчета.

Дано: N=26л.с.; n=360 об/мин; a=1.2м; e=0.6м; c=1.1м; DI=450см; D2=400см; α_1/α_2 = 45/25.

Решение:

1) Определение моментов, приложенных к шкивам.

Момент на шкивах по передаваемой мощности и скорости вращения вала определяется по формуле

$$M = N/\omega$$

где $N = 19,11\kappa Bm = 19,11\cdot 10^3 Bm$

 ω – угловая скорость вращения вала, рад/с.

$$\omega = \frac{\pi n}{30} = \frac{\pi \cdot 360}{30} = 37.7 c^{-1}$$

Момент на первом шкиве : $M_1 = \frac{N}{\omega} = \frac{19,11 \cdot 10^3}{37,7} = 506,89 Hm$

$$M_2 = M_3 = \frac{M_1}{2} = 253,44 H_M$$

Построим эпюры крутящих моментов рис. 2.1.

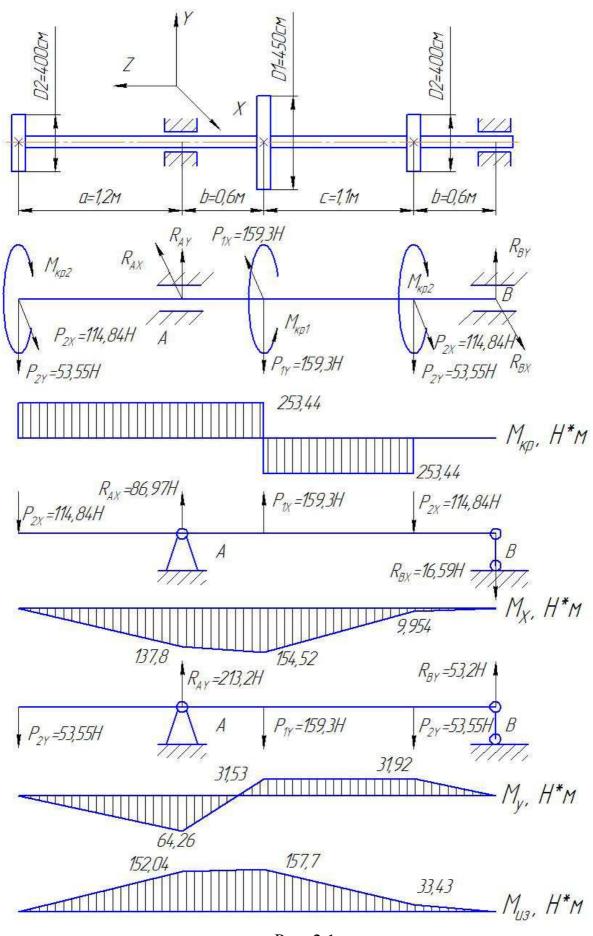


Рис. 2.1

2) Определение окружных усилий.

$$M_{\kappa p1} = P_1 \frac{D_1}{2}$$
 $M_{\kappa p2} = P_2 \frac{D_2}{2}$
$$P_1 = \frac{2M_{\kappa p1}}{D_1} = \frac{2 \cdot 506,89}{4,5} = 225,28H$$

$$P_2 = \frac{2M_{\kappa p2}}{D_2} = \frac{2 \cdot 253,44}{4} = 126,72H$$

Спроектируем усилия P_1 и P_2 на координатные оси x и y:

$$P_{1x} = P_1 \cdot \cos \alpha_1 = 225,28 \cdot \cos 45^\circ = 159,3H$$

$$P_{1y} = P_1 \cdot \sin \alpha_1 = 225,28 \cdot \sin 45^\circ = 159,3H$$

$$P_{2x} = P_2 \cdot \cos \alpha_2 = 126,72 \cdot \cos 25^\circ = 114,84H$$

$$P_{2y} = P_2 \cdot \sin \alpha_2 = 126,72 \cdot \sin 25^\circ = 53,55H$$

3) Определяем силы, изгибающие вал в горизонтальной и вертикальной плоскостях, и строим эпюры изгибающих моментов.

Рассматриваем изгиб вала в плоскости ZOX.

$$\sum M_{A} = 0 \qquad P_{2X} \cdot 1,2 + P_{1X} \cdot 0,6 - P_{2X} \cdot 1,7 - R_{BX} \cdot 2,3 = 0$$

$$R_{BX} = \frac{P_{2X} \cdot 1,2 + P_{1X} \cdot 0,6 - P_{2X} \cdot 1,7}{2,3} = 16,59H$$

$$\sum M_{B} = 0 \qquad P_{2X} \cdot 0,6 - P_{1X} \cdot 1,7 + P_{2X} \cdot 3,5 - R_{AX} \cdot 2,3 = 0$$

$$R_{AX} = \frac{P_{2X} \cdot 0,6 - P_{1X} \cdot 1,7 + P_{2X} \cdot 3,5}{2,3} = 86,97H$$
Проверка:
$$\sum P_{X} = 0 \qquad P_{1X} - 2P_{2X} - R_{BX} + R_{AX} = 0$$

Рассматриваем изгиб вала в плоскости YOZ.

$$\sum M_{A} = 0 \qquad P_{1Y} \cdot 0.6 + P_{2Y} \cdot 1.7 - P_{2Y} \cdot 1.2 - R_{BY} \cdot 2.3 = 0$$

$$R_{BY} = \frac{P_{1Y} \cdot 0.6 + P_{2Y} \cdot 1.7 - P_{2Y} \cdot 1.2}{2.3} = 53.2H$$

$$\sum M_{B} = 0 \qquad P_{1Y} \cdot 1.7 + P_{2Y} \cdot 0.6 + P_{2Y} \cdot 3.5 - R_{AY} \cdot 2.3 = 0$$

$$R_{AY} = \frac{P_{1Y} \cdot 1,7 + P_{2Y} \cdot 0,6 + P_{2Y} \cdot 3,5}{2,3} = 213,2H$$

Проверка: $\sum P_{x} = 0$ $P_{1Y} + 2P_{2Y} - R_{BY} - R_{AY} = 0$

4) Построим эпюру суммарных изгибающих моментов Находим суммарный момент по формуле:

$$M_{u} = \sqrt{M_{cop}^2 + M_{gepm}^2}$$

5) Определение опасного сечения и величины максимального расчетного момента по третьей теории прочности.

Из эпюр M_K и M_u видно, что опасное сечение будет в точке C, где $M_K = 253,44 H M$; $M_u = 157,7 H M$

$$M_p^{III} = \sqrt{M_u^2 + M_K^2} = \sqrt{157,7^2 + 253,44^2} = 298,5H_M$$

5) Условие прочности вала по третьей теории прочности

$$\sigma_p^{III} = \frac{M_p^{III}}{W_r} \leq [\sigma],$$

где W_x - осевой момент сопротивления сечения. Для круга:

$$W_x = \frac{\pi d^3}{32} \approx 0.1d^3$$

$$d = \sqrt[3]{\frac{M_p^{III}}{0.1[\sigma]}} = \sqrt[3]{\frac{298.5 \cdot 10^3}{0.1 \cdot 50}} = 39,08 \text{мм}$$

Принимаем диаметр вала:D=40мм.

2.3. Подшипники качения

Опорами для валов и осей являются подшипники качения и скольжения. Наибольшее распространение получили подшипники качения. К их преимуществам относятся высокий КПД, надёжность, малые габариты, низкий коэффициент трения, унификация и стандартизация.

К недостаткам можно отнести невозможность разъёма и жёсткость восприятия нагрузки.

Классификация подшипников качения

а) по форме тел качения: шариковые и роликовые (Рис.2.2).

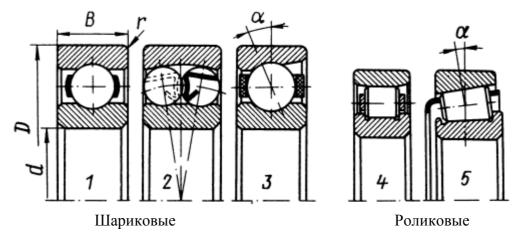


Рис. 2.2

б) по направлению воспринимаемой нагрузки: радиальные, упорные, радиально-упорные.

Подшипники качения, в зависимости от габаритов, имеют размерные серии: особо-лёгкие, лёгкие, лёгкие-широкие, средние широкие, тяжёлые. По номеру на боковой стороне кольца можно определить размер внутреннего диаметра подшипника, размерную серию и тип подшипника.

2.4. Расчет подшипников качения

Критерием работоспособности подшипников качения является условие долговечности по усталостному выкрашиванию: $L=a_1a_2(C/P)^p$

Подшипники качения рассчитываются на статическую грузоподъёмность если его частота вращения менее 1 об/мин. При этом определяется приведённая статическая нагрузка:

- а) для радиальных- P_0 =Fr
- б) для радиально-упорных- $P_0 = X_0 F_r + Y 0 F_a$

Здесь X_0 и Y_0 – коэффициенты радиальной и осевой нагрузки (вбираются по каталогу подшипников);

Fr и F_a – радиальная и осевая нагрузка соответственно.

Если частота вращения больше 1 об/мин., расчет выполняется по динамической грузоподъёмности из зависимости между приведенной нагрузкой P и ресурсом подшипника L до появления признаков усталости (в миллионах оборотов): $(C/P)^p = L$.

Здесь: P - динамическая грузоподъёмность подшипника (каталог); p - коэффициент (p=3 для шарикоподшипников, p=10/3 для роликоподшипников).

Ресурс подшипника в часах можно определить по формуле:

$$L_h = (C/P)^p 10^6/60 n (2.3)$$

Полученное значение сравнивается с заданным сроком службы:

$$L_h \leq L$$
 зад.

2.5. Определение приведенной нагрузки

Для радиальных и радиально-упорных подшипников

$$P=(XVF_r + YFa) K \delta K_T$$
 при $Fa/FVr \ge e$; (2.4)

$$P = F_r V K \delta K_T$$
 при $Fa/F V r \leq e$, (2.5)

Где e является функцией $e = f(F_a / C_o)$ и выбирается из каталога.

2.6. Муфты

Муфты применяются для кинематической и силовой связи между вращающимися валами. Назначение муфт — передача крутящего момента, компенсация несоосности валов, предохранение трансмиссий от поломок, обеспечении включения и выключения трансмиссий.

Муфты выбираются с учетом крутящего момента на валах и режима нагрузки:

$$T_{MV\phi m} = K_H T$$

где $K_H = 1.5...3$ (коэффициент нагрузки).

Типы механических муфт представлены на рис. 2.3.

В приводах с малыми и средними крутящими моментами наибольшее распространение получили муфты упругие втулочно-пальцевые (МУВП), представленная на рис.2.4

Эти муфты нормализованы для валов диаметром до150 мм и крутящих моментов до 15000 Нм.

Упругими элементами служат резиновые втулки или кольца

Для проверки прочности пальцы проверяются на изгиб, а втулки (кольца) на смятие: $\sigma_{\text{см}} = 2TK/(d_I/zD_I) \le \sigma_{\text{см}}$

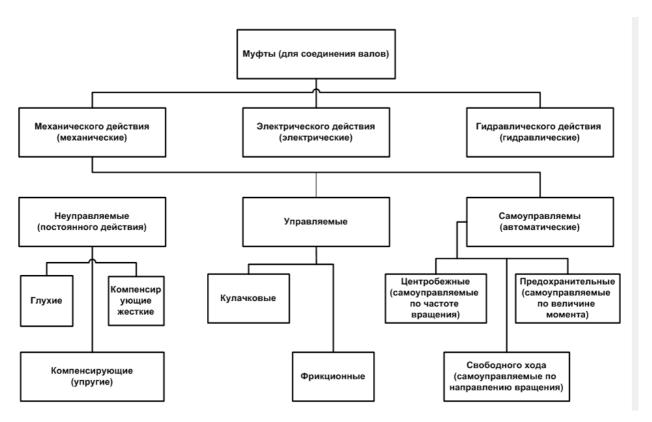


Рис.2.3. Классификация муфт

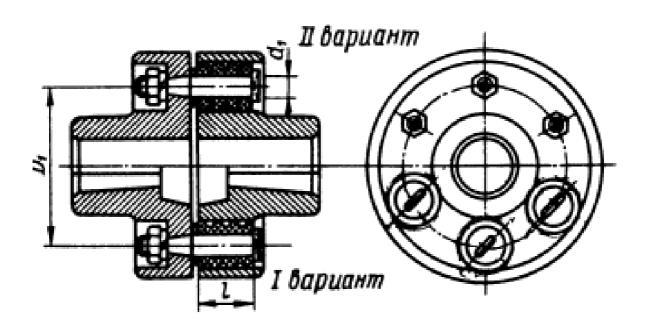


Рис.2.4 Упругая втулочно-пальцевая муфта (МУВП)

Глава 3. СОЕДИНЕНИЯ

Соединения подразделяются на разъёмные и неразъёмные. К разъёмным относятся соединения которые можно разобрать без разрушения: клиновые, шлицевые, шпоночные, штифтовые, клеммовые. К неразъёмным – сварные, клёпанные, прессовые, вальцованные, паяльные, клеевые.

3.1. Сварные соединения

Сварные соединения бывают: стыковые, внахлёстку, тавровые, пробочные. Виды швов: фланговый (рис 3.1а, лобовой (рис. 3.1б), комбинированный (рис. 3.1в),

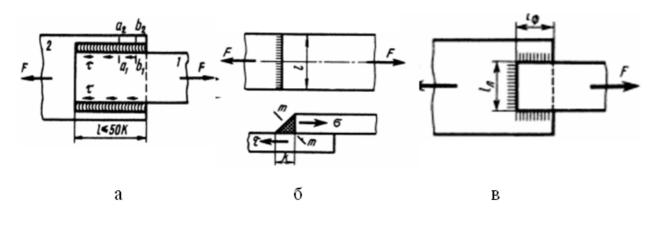


Рис.3. 1

3.2. Расчёт сварных швов

Критерием работоспособности сварных соединений является условие прочности на растяжение, изгиб и кручение.

1.Стыковые швы рассчитываются на растяжение (сжатие) рис. 3.2.

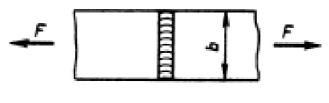


Рис. 3.2

Условие прочности стыкового шва: $\sigma_p = F/bs \le [\sigma]_p$,

где F – действующая сила;

b – длина шва;

s – ширина шва.

2. Валиковые швы (рис. 3.3) расчитывают на срез.

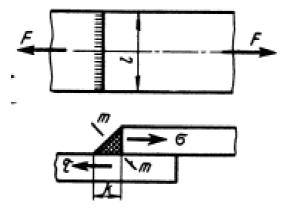


Рис. 3.3

Условие прочности валикового шва $\tau = F / (0/7kl) \le [\tau]$, где k – катет шва; l – длина шва.

3.Соединение контактной (точечной)сваркой рассчитывают на срез.

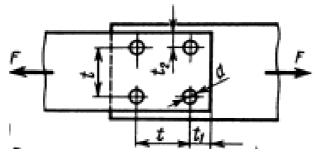


Рис. 3.4

Условие прочности τ =4F / (z I π d 2) \leq [τ]

i – число плоскостей среза;

d –диаметр сварной точки.

Допускаемые напряжения швов при постоянной нагрузке указаны в таблице 3.1

Таблица 3.1

Вид технологического процесса	Допускаемые напряжения в швах при		
сварки	растяжении	сжатии	срезе
Автоматическая под флюсом, ручная электродами Э42A Э50A, контактная стыковая	$[\sigma]_{_p}$	$[\sigma]_{_p}$	$0,65[\sigma]_p$
Ручная дуговая электродами Э42 и Э50, газовая сварка	$0.9[\sigma]_p$	$\left[\sigma ight]_{\scriptscriptstyle p}$	$0,6[\sigma]_p$
Контактная точечная и шовная	_	_	$0.5[\sigma]_p$

Примечание $[\sigma]_p = \sigma_\tau / s$ – допускаемое напряжение на растяжение для материала соединяемых деталей при статических нагрузках. Для металлических конструкций запас прочности s=1,4...1,6

3.3.Основные случаи нагружения сварных соединений

- 1. Комбинированный шов, нагруженный силой (рис 3.5а). Прочность шва $\tau = F / [0.7k(2l_{\phi} + l_{\pi}] \le [\tau],$
- 2. Лобовой шов, нагруженный моментом (рис. б). Прочность шва $\tau = T/W = 6T/(0.7kb^2) \le [\tau],$
 - 3. Комбинированный шов, нагруженный моментом и силой (рис.
 - 3.5в). Суммарное максимальное напряжние:

$$\tau = \tau_T + \tau_F \leq [\tau],$$

где $\tau_T = T / (0.7 k l \phi l_n + 0/7 k l_n^2)$ напряжение от момента Т; $\tau_F = T / W = 6T / (0.7kb^2) \le [\tau]$, напряжение от силы F.

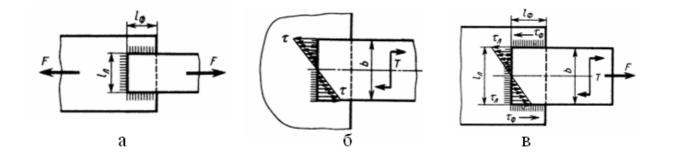


Рис. 3.5

3.4. Резьбовые соединения

Критерием работоспособности резьбовых соединений является:

а) для крепежных резьб – условие прочности витков на срез

$$\tau = F/\left(\pi \ d_{I} \ H \ K \ K_{m}\right) \leq [\tau]$$

б) для ходовых резьб – условие прочности на износ

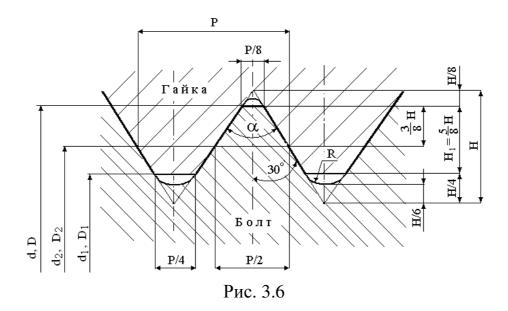
$$\sigma_{cM} = F/(\pi d_2 h z) \leq [\sigma_c]$$

Резьба представляет собой выступы в виде винтовой линии, расположенные на поверхности вращения.

Резьба может быть метрической, дюймовой, трубной, упорной. По форме сечения винтового выступа круглая, треугольная, трапецеидальная, прямоугольная.

Геометрические параметры (рис. 3.6)

d – наружный диаметр;


 d_1 - внутренний диаметр;

 d_2 - средний диаметр;

h – рабочая высота профиля;

р – шаг резьбы;

 p_1 – ход резьбы.

3.5. Момент трения в резьбе

Момент завинчивания гайки на винт, нагруженный силой F:

$$T_{3ae} = T_m + T_p,$$

где $T_m = F f(D_{cp}/2)$ – момент трения на торце гайки (рис 3.7); $T_p = 0.5 \ F \ d_2 \tan(\psi + \varphi)$ – момент, удерживающий винт (реактивный) .

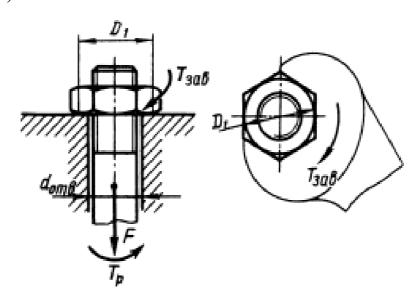
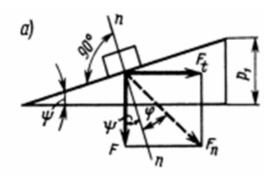



Рис. 3.7

Тогда момент завинчивания (рис 3.8 а), момент отвинчивания рис. 3..8б):

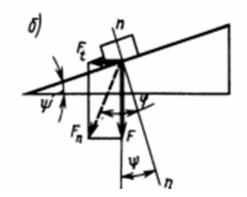


Рис. 3.8

Момент завинчивания $T_{3a6}=0.5~F~d_2[(D_{cp}/d_2)f+\tan(\psi+\varphi)]$ Момент отвинчивания $T_{ome}=0.5~F~d_2[(D_{cp}/d_2)f+\mathrm{tg},(\psi+\varphi)]$ где ψ -угол подъёма резьбы, φ – угол трения

3.6. КПД винтовой пары

Коэффициент полезного действия винтовой пары определяется отношением работы, при завинчивании, без учёта трения к работе с учётом трения.

Работа при завинчивании равна произведению момента завинчивания на угол завинчивания, а при равенстве углов отношение работ равно отношению моментов, т.е. T^*/T , где:

$$\eta = tg \psi / \left[(D_{cp} / d) f + tg / (\psi - \varphi) \right]$$
(3.2)

Здесь $\hat{T} = 0.5Fd \ tg\psi$ - момент завинчивания без трения (f = 0 и $\varphi = 0$), T = T зав (см. стр. 46)

Трение на торце гайки не учитываем ($T_{\rm T}$ = 0), тогда $T_{\it 3a6}$ $T_{\it p}$ = 0,5Fd $tg(\psi+\phi)$ и КПД определится выражением:

3.7. Расчет стержня затянутого болта

Стержень болта работает на сложное сопротивление: растяжение (σ_p) и кручение $(\tau_{\kappa p})$.

Напряжение кручения зависит от момента завинчивания $T_{\text{зав}}$ (формула см стр. 46).

$$\sigma_p = 4F / \pi d^2 \tau_{\kappa p} = T_p / W_c = 8 F d_2 / \pi d_1^3$$
 (3.4)

Прочность стержня определяется по эквивалентным напряжениям:

$$\sigma_{\Re 8} = \sqrt{3} (\tau_{\kappa p} / \sigma_p)^2 \tag{3.5}$$

Для метрической резьбы ($d_2/d1$ =1.12, ψ =2,5, φ =6)

$$\sigma_{\mathfrak{I}KB} = 1.3 \,\sigma_p; \, F_{pacyemhas} = 1.3F \tag{3.6}$$

Условие прочности затянутого болта:

$$\sigma_p = 1.3F / \pi d^2 / 4 \le [\sigma_p],$$
 (3.7)

где $[\sigma_p] = \sigma_m/n$. Предел текучести « $\sigma_{\scriptscriptstyle T}$ »; предел запаса прочности- «n».

3.8. Расчет резьбы на срез и смятие

Расчёт крепежной резьбы выполняется из условия прочности на срез, а ходовой- из условия износостойкости (рис 3.9).

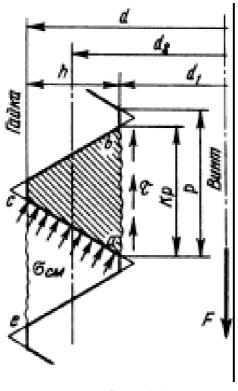


Рис. 3.9

При одинаковых материалах прочность среза для винта определяется из выражения:

$$\tau = F / (\pi d_1 HKK_m) \le \tau ; \tag{3.8}$$

для гайки:

$$\tau = F / (\pi d HKK_m) \le [\tau]; \tag{3.9}$$

где H – высота гайки; K = a b / p (K = c e / p) – коэффициент полноты резьбы; Km – коэффициент неравномерности нагрузки.

Условие прочности ходовой резьбы на смятие:

$$\Sigma \sigma_{c_{M}} = F / (\pi d_{2} h z) \leq [\sigma_{c_{M}}]; \qquad (3.10)$$

где z = H/p – число рабочих витков; [$\sigma_{c_{M}}$] = $0.3...0.4~\sigma_{m.}$

3.9. Распределение нагрузки по виткам резьбы

Стержень резьбы работает на растяжение, а гайка на сжатие. Наиболее нагружены первые от опорной поверхности витки.

Задачу о распределении нагрузки решил Н.Е.Жуковский. Исследования выявили, что 1/3 нагрузки приходится на первый виток, 2/3 нагрузки воспринимают три первых витка, 1/100 нагрузки приходится на 10-й виток (рис3.10).

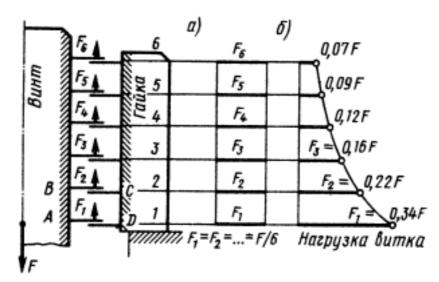


Рис.3.10

Для равномерного распределения нагрузки создаются конструкции, выравнивающие напряжения (Рис.3.11).

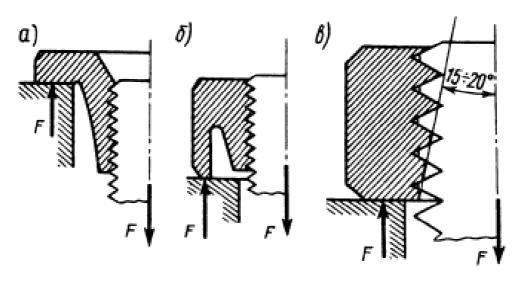


Рис.3.11

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Иванов М.Н. Детали машин: Учеб для студентов втузов/под. ред..И.А. Финогенова- 6-е изд., перераб.-М.: В ысш. шк., 2007.-383с.: ил.
- 2. *Леликов О.П*.Основы расчета и проектирования деталей и узлов машин(текст) конспект лекций по курс « Детали машин» М. Машиностроение.2002-400с..
- 3. Подшипники каченя: Справочник / Под ред. *Н.Нарышкина и Р.В.Коросташевского*. М., 1984
 - 4. Решетов Д.Н. Детали машин. М., 1989
- 5. *Николаев Г.А.*, *Винокуров В.А.* Сварные конструкции. Расчет и проектирование. М., 1990
 - 6. Артоболевский И.И. Теория механизмов и машин М., 1975
- 7. *Пронин Б.А.* Клиноременные и фрикционные передачи и вариаторы. М., 1960
 - 8. Ряховский О.А., Иванов С.С. Справочник по муфтам Л., 1991
- 9. *Когаев В.П.*, *Дроздов Ю.Н.* прочность и износостойкость деталей машин. М., 1991

ПРИЛОЖЕНИЕ

Тестовый материал для контроля знаний

1 Задание Известно, что передаточное отношение передачи 2,5. К какому типу передач относится эта передача?	ОМультипликаторРедукторВариаторПравильный ответ не приведен
2 Задание Известно, что передаточное отношение передачи 1,5. К какому типу передач относится эта передача?	ОМультипликатор⊘РедукторЗВариаторФПравильный ответ не приведен
3. Задание Каково назначение механических передач?	 Уменьшать потери мощности Соединять двигатель с исполнительным механизмом Передавать механическую энергию с одновременным преобразованием параметров движения Совмещать скорости валов
4. Задание Известно, что передаточное отношение передачи 0,5. К какому типу передач относится эта передача?	ОМультипликаторРедукторВариаторОПравильный ответ не приведен
5. Задание Как изменится величина момента на выходном валу передачи при увеличении скорости вращения двигателя в 1,5 раза, если мощность двигателя не меняется?	 1 Не изменится 2 Увеличится в 3 раза 3 Уменьшится в 1,5 раза 4 Увеличится в 1,5 раза
6. Задание Выбрать основные достоинства фрикционных передач.	 Бесшумность и плавность работы Постоянство передаточного отношения Нагрузка на опоры Низкая стоимость и доступность материалов

7. Задание Указать основные недостатки фрикционных передач	 Сложность конструкции Нагрузка на опоры Скольжение в передаче Низкая стоимость и доступность материалов
8. Задание Определить явление, непосредственно не связанное со скольжением во фрикционной передаче	 Буксование Упругие деформации в зоне контакта Несовпадение скоростей трущихся поверхностей Деформация валов
9. Задание Указать основной недостаток фрикционных передач	 Необходимость регулировок Большой расход смазочного материала Износ рабочих поверхностей Непостоянство передаточного отношения
10. Задание Почему фрикционные передачи с непосредственным контактом не используют в точных механизмах станков?	 Из-за низкого КПД Из-за нагрева передачи Из-за непостоянства передаточного отношения Из-за большого веса
11. Задание Что такое линия зацепления?	 Линия, очерчивающая профиль зуба Линия, проходящая через центры колес Общая нормаль к профилям зубьев в точке касания Касательная к профилю зуба о точке касания
12. Задание Каков угол зацепления цилиндрических колес?	1 30° 2 18° 3 20° 4 14°
13. Задание Определить модуль зуба колеса, если окружной шаг 12,56 мм	 12,5 mm 6 mm 2,5 mm 4 mm

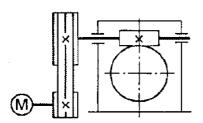
14. Задание Что такое делительный окружной шаг зубьев? Выбрать наиболее точную формулировку	 Расстояние между профилями соседних зубьев Расстояние между одноименными профилями соседних зубьев по делительной окружности Ширина зуба по делительной окружности Длина дуги делительной окружности между соседними зубьями
15. Задание Определить диаметры окружностей выступов зубчатых колес передачи, если высота зуба колеса 5,625 мм; число зубьев шестерни 18; передаточное отношение передачи 2,5	1 38,75 mm; 106,26 mm 2 45 mm; 112,5 mm 3 50 mm; 117,5 mm 4 50 mm; 167,5 mm
16. Задание Определить передаточное отношение передачи, если диаметр делительной окружности шестерни 59,5 мм; модуль зуба 3,5 мм; число зубьев второго колеса 68	1 3,15 2 4 3 5 4 6,3
17. Задание Определить нормальную силу в зацеплении шестерни Fn, если диаметр делительной окружности 0,06 м; мощность на валу зубчатой передачи 7 кВт при скорости 65 рад/с.	 31795 3589 3820 1250
18. Задание Определить радиальную силу, действующую на ведомое колесо, если мощность на ведущем валу прямозубой передачи 5 кВт при скорости 100 рад/с; диаметр делительной окружности ведущего колеса 0,08 м; передаточное отношение передачи 4; трением в зацеплении пренебречь	 227,5H 455H 670H 1250H

19. Задание С какими напряжениями при работе передачи связана поломка зуба?	О С напряжениями сжатияС напряжениями сдвигаС контактными напряжениямиС напряжениями изгиба
20. Задание Рассчитать диаметр вершин витков червяка, если m = 3,15 мм; q= 12,5; z1 = 2	 45,67 MM 39,38 MM 31,71 MM 29,74 MM
21. Задание Каким следует назначить число заходов червяка и число зубьев колеса, чтобы получить передаточное отношение передачи 26? Выбрать несколько ответов	1; 30 2; 52 3; 78 4; 114
22. Задание Указать основные недостатки червячных передач	 Износ и нагрев деталей передачи Самоторможение Ограничение по мощности Значительные размеры передачи
23. Задание Определить число заходов червяка, если известно, что скорость вала червяка приблизительно 150 рад/с; скорость колеса 3,85 рад/с; число зубьев колеса 78	① 1 ② 2 ③ 3 ④ 5
24. Задание Назначить число заходов червяка и число зубьев колес, если угловая скорость на входе и выходе червячной передачи 74 и 1,54 рад/с соответственно	1; 48 2; 98 3; 129 4; 172
25. Задание Определить среднее передаточное число передачи, если число зубьев меньшей звездочки 21; число зубьев большей звездочки 83; диаметр меньшей звездочки 81,4 мм, большей 362,8 мм	 4,45 3,95 3,5 2,95
26. Задание Определить диаметр делительной окружности звездочки цепи ПР- 31,75-89, если число зубьев 25	 1 25,4 mm 2 63,5 mm 3 125,4 mm 4 254,4 mm

27. Задание Определить среднее передаточное число передачи, если число зубьев звездочек z1 = 24, z2 = 60; диаметры звездочек d1 = 255; d2 = 635 мм	 2,5 3,5 2,6 10,6
28. Задание Каковы основные причины выхода из строя цепных передач?	Увеличение шага цепиКоррозия металлаПровисание цепиИзнос и разрушение деталей
29. Задание Определить диаметр вала для передачи 5,5 кВт при частоте вращения вала 750 мин ⁻¹ , если материал вала — сталь; допускаемое напряжение кручения 16 МПа	 25 mm 28 mm 36 mm 42 mm
30 Задание Указать основной критерий работоспособности валов	 Статическая прочность при изгибе Сопротивление усталости Устойчивость Статическая прочность при совместном действии Мизг. и Мкруч.
31 Задание Определить диаметр выходного конца ведомого вала редуктора, если вращающий момент на входе 65 Н•м; КПД редуктора 0,955; передаточное число 4; материал вала — сталь; допускаемое напряжение кручения 20 МПа.	 25 mm 30 mm 40 mm 50 mm
32 Задание Что учитывается коэффициентом безопасности при расчете подшипников?	 Влияние вращения внешнего кольца Влияние температуры Влияние типа машины и числа смен Влияние осевых составляющих радиальной силы
33 Задание Определить скорость выходного вала, если скорость на быстроходном валу редуктора Ц2В-125-12,5 составляет 86 рад/с.	 1075 рад/с 107,5 рад/с 43 рад/с 6,88 рад/с

34 Задание	0 17,14 рад/с
Определить скорость на входе в	2 50,8 рад/с
редуктор, если скорость на	3 57,14 paд/c
тихоходном валу редуктора КТ-160-	4 134,4 рад/с
2,8 составляет 48 рад/с	• 134,4 рад/с
35 Задание	
Определить угловую скорость на	0 1,2 рад/с
быстроходном валу, если угловая	2 16 рад/с
скорость па тихоходном валу	3 160 рад/с
редуктора Ц2Ш-160-10 составляет 12	@ 120 рад/с
рад/с.	
	• Значительное передаточное
	число
	Оравнительно малая масса и
36 Задание	габаритные размеры
Каково основное достоинство	Передача вращения между
конических редукторов?	валами с пересекающимися осями
	валов
	Точная фиксация осевого
	положения колес
37 Задание Определить вращающий момент па входе редуктора Ц-160-4, если вращающий момент на тихоходном валу редуктора 560 Н•м; КПД подшипников каждого из валов 0,99; КПД цилиндрического зацепления 0,98	 146,6 H•M 145,8 H•M 2333 H•M 140 H•M
	• Невысокие требования к
20.7	точности установки
38 Задание	② Большое передаточное число в
Указать основное достоинство	одной ступени
червячных редукторов	Компактность по сравнению с
	другими передачами
	Ф Высокий КПД
	• Передача вращающего момента с
	изменением направления вращения
	Осединение концов валов без
39 Задание	изменения величины и направления
Каково назначение муфт?	вращающего момента
	Изменение значения вращающего
	момента
	Создание дополнительной опоры
	для длинных валов

40 Задание Каково основное назначение жестких компенсирующих муфт?	 Обеспечивать соединение валов с незначительной разницей угловых скоростей Соединять соосные валы без перекосов Поглощать энергию ударов и вибраций Соединять валы с незначительными радиальными, осевыми и угловыми смещениями
41 Задание Какую муфту следует использовать, если при работе механизма возникают периодические толчки и вибрации?	Предохранительную с ломающимися элементамиЖесткую компенсирующуюУпругую компенсирующуюСцепную управляемую
42 Задание Указать основное назначение упругих муфт	 ● Предохранять двигатель от перегрузок ② Необратимо поглощать энергию толчков и вибраций ⑤ Соединять валы со значительными перекосами ④ Плавно включать и выключать передачи при перегрузке
43 Задание Какую муфту из перечисленных стоит выбрать, если необходимо предохранять двигатель при часто повторяющихся перегрузках?	 Упругую втулочно-пальцевую Зубчатую компенсирующую Многодисковую фрикционную Предохранительную со срезным штифтом
44 Задание Определить передаточное отношение второй ступени двухступенчатой передачи, если Wвх = 155 рад/с; Wвых = 20,5 рад/с; z1 = 18; z2 = 72	 1 7,51 2 3 3 2,52 4 5,5

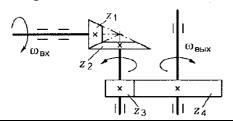

45 Задание За счет чего достигается самоторможение в резьбе?	 За счет отсутствия смазочного материала За счет специального подбора материалов винта и гайки За счет угла профиля резьбы За счет одновременного действия первого и второго факторов
46 Задание Каково основное преимущество болтового соединения перед винтовым и соединением шпилькой?	 Низкая стоимость Не требуют нарезания резьбы в соединяемых деталях Масса соединения меньше Точность центрирования соединяемых деталей
47 Задание Выбрать самый высокопроизводительный метод изготовления крепежных деталей с резьбой	 Отливка в формы Прессование Резание на токарно-винторезном станке Накатывание на резьбонакатных станках
48 Задание Для передачи вращающего момента подобрана шпонка 12 х 8 х 63 ГОСТ 23360—78. Расшифровать запись, если b — ширина сечения; h — высота сечения; 1 — длина шпонки	• h = 8 mm; l = 12 mm; b = 63 mm • h = 63 mm; lp = 12 mm; b = 8 mm • h = 8 mm; l = 63 mm; b = 12 mm • h = 8 mm; lp = 1-b = 63 mm; b = 12 mm • mm
49 Задание Каково основное преимущество шлицевых соединений по сравнению со шпоночными?	 Большая площадь несущих поверхностей Простота сборки соединения Технологичность Меньшая масса
50 Задание По какой величине подбирают шпоночные и шлицевые соединения?	 По вращающему моменту на валу По вращающему моменту и диаметру вала По диаметру вала и длине ступицы По передаваемой мощности и диаметру вала
51 Задание По каким напряжениям проводят проверочный расчет стандартных шлицевых соединений?	По напряжениям изгибаПо напряжениям сжатияПо напряжениям сдвигаПо напряжениям смятия

В каких случаях используют клиновые шпонки?

- Для повышения точности сборки
- **2** Чтобы не вызвать смещение ступицы
- **3** Чтобы меньше ослаблять сечение вала
- **4** При низкой точности деталей в единичном производстве

53 Задание

Определить требуемую мощность электродвигателя, если мощность на выходе из передачи 12,5 кВт; КПД ременной передачи 0,96; КПД червячного редуктора 0,82


0 12 кВт

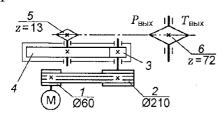
2 9,84 κBτ

- **❸** 15,24 кВт
- **4** 15,88 κBτ

54 Задание

Как изменится мощность на выходном валу передачи, если число зубьев второго колеса z2 увеличится в 2 раза?

• Увеличится в 2 раза

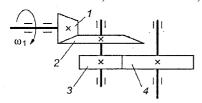

2 Уменьшится в 2 раза

8 Не изменится

4 Увеличится в 4 раза

55 Задание

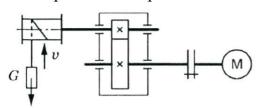
Как изменится частота вращения выходного вала привода при увеличении числа зубьев колеса 3 в 2 раза?


• Возрастет в 2 раза

2 Уменьшится в 2 раза

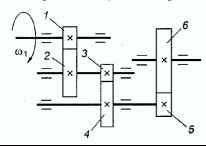
8 Возрастет в 4 раза

4 Уменьшится в 4 раза

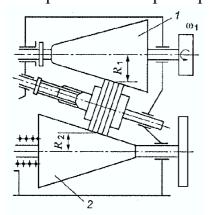

Для изображенной многоступенчатой передачи определить общее передаточное число, если d1 = 50 мм; d2 = 200 мм; d3 = 35 мм; d4 = 70 мм

- **0** 4
- **2** 6
- **8**
- **4** 10

57 Задание

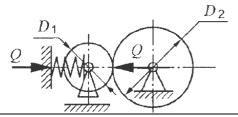

Определить требуемую мощность электродвигателя лебедки, если скорость подъема груза 4 м/с; вес груза 1000 Н; КПД барабана 0,9; КПД цилиндрической передачи 0,98

- **●** 3,53 кВт
- **2** 4,53 кВт
- **❸** 2,15 кВт
- **4** 7,32 κΒτ


58 Задание

Для изображенной многоступенчатой передачи определить общее передаточное число, если $z_1 = 20$; $z_2 = 80$; $z_3 = 30$; $z_4 = 75$; $z_5 = 40$; $z_6 = 200$

- **Q** 25
- **2** 50
- **8** 20
- **4** 75

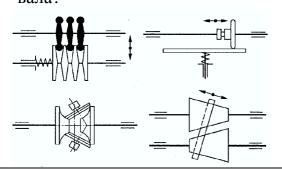

Выбрать формулу для расчета диапазона регулирования передачи изображенного вариатора

- $\mathbf{O} R_{2}/R$
- $\mathbf{Q}_{R_{1}/R_{2}}$
- $R_{2\max}/R_{1\min}$
- $\mathbf{4} \ R_{\max}^2 / R_{\min}^2$

60 Задание

Выбрать способ увеличения трения в цилиндрической фрикционной передаче

• Повышение твердости поверхностей

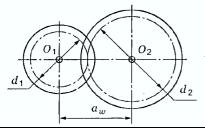

2 Использование смазочного материала

3 Увеличение площади контакта

4 Увеличение силы прижатия катков

61 Задание

Какой из изображенных вариаторов позволяет получить реверсивное вращение выходного вала при одностороннем вращении ведущего вала?


- многодисковый
- 2 лобовой
- **3** торовый
- **4** двухконусный

Выбрать формулу для определения модуля зубчатой передачи

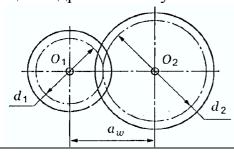
- $\begin{array}{c} \mathbf{0} \ _{0,5(d_1+d_2)} \\ \mathbf{2} \ _{0,5(1+u)d_1} \\ \mathbf{3} \ _{\rho_r/\pi} \\ \mathbf{4} \ _{a_W/z} \end{array}$

63 Задание

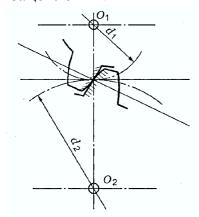

Определить a_w , если $d_1 = 64$ мм; $z_2 =$ 80; m = 2 MM

- **1** 78 mm
- **2** 224 MM
- **6** 112 mm
- **4** 160 mm

64 Задание

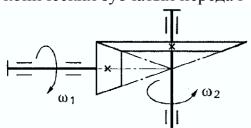

Рассчитать передаточное отношение передачи, если $a_w = 160$ мм; $d_1 = 80$ MM

- **0** 2
- **2**,5
- **B** 3
- **4**


65 Задание

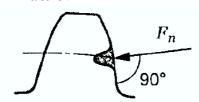
Выбрать формулу для определения диаметра окружности выступов цилиндрического зубчатого колеса

- $mz_1(1+u)/2$
- **a** m(z+2)
- **8** m(z-2,5)
- **4** *mz*


Какой угол называется углом зацепления?

- Геометрическое место точек касания профилей зубьев
- **2**Угол между линией центров и линией зацепления
- **Э**Угол между линией зацепления и прямой, перпендикулярной линии центров
- **4** Угол между линией зуба и образующей цилиндра колеса

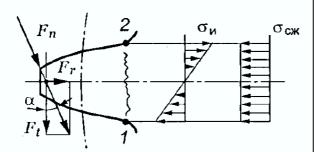
67 Задание


Каково основное достоинство конических зубчатых передач

- •Простота изготовления и монтажа
- **2**Малые габаритные размеры и вес
- **3** Равномерность распределения нагрузки в зацеплении
- **4**Возможность соединения валов с пересекающимися осями

68 Задание

Какова основная причина выхода из строя зубчатых передач, работающих в масле?


- •Значительный износ рабочей поверхности зуба
- Излом зуба
- **3**Выкрашивание рабочей поверхности зуба
- Заклинивание подшипников

69 Задание

По какой из механических характеристик определяют допускаемое контактное напряжение зубчатых колес

- \mathbf{o}_{σ_r}
- $\mathbf{Q}_{\sigma_{R}}$
- $oldsymbol{\mathfrak{g}}_{\delta,\%}$
- **4** *HB*

По какой формуле определяется напряжение при расчете зубчатых колес на изгиб

$$\sigma_{\rm F} = \frac{F_t l}{W}$$

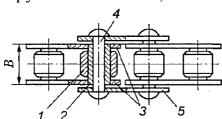
$$\sigma_{\rm F} = Y_{\rm F} \frac{F_t}{b_2 m} K_{\rm F\beta} K_{\rm F\nu}$$

$$\sigma_F = \frac{F_r}{A}$$

$$\sigma_F = \left(\frac{F_t}{W} + \frac{F_r}{A}\right)$$

71 Задание

Выбрать формулу для проверочного расчета цилиндрической зубчатой передачи по контактным напряжениям

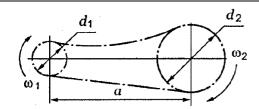

$$\mathbf{K}_{\mathbf{a}}(u+1)\sqrt[3]{\frac{T_2K_{H\beta}}{\left[\sigma_H\right]^2u^2\psi_{ba}}}$$

$$\frac{310}{a_{w}u}\sqrt{\frac{T_{2}K_{H\beta}K_{H\nu}(u+1)^{3}}{b^{2}}} \leq \left[\sigma_{H}\right]$$

$$Y_{F}\frac{F_{t}}{b_{2}m}K_{F\beta}K_{F\nu}\leq\left[\sigma_{F}\right]$$

72 Задание

Указать основное назначение ролика 1 в изображенной цепи (2 - втулка; 3 - внутренние пластины; 4- валик; 5 - наружные пластины)

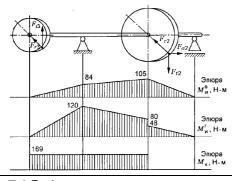


- Уменьшение износа втулки 2
- **2**Уменьшение износа ролика 1
- **3**Уменьшение износа валика 4
- •Уменьшение шага цепи

73 Задание

Определить передаточное число передачи, если числа зубьев звездочек z1 = 23, z2 = 70; диаметры делительных окружностей звездочек d1 = 145 мм, d2 = 406 мм

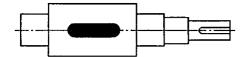
- **0**2,79
- **2**3,04
- **8**0,33
- **4**6,3

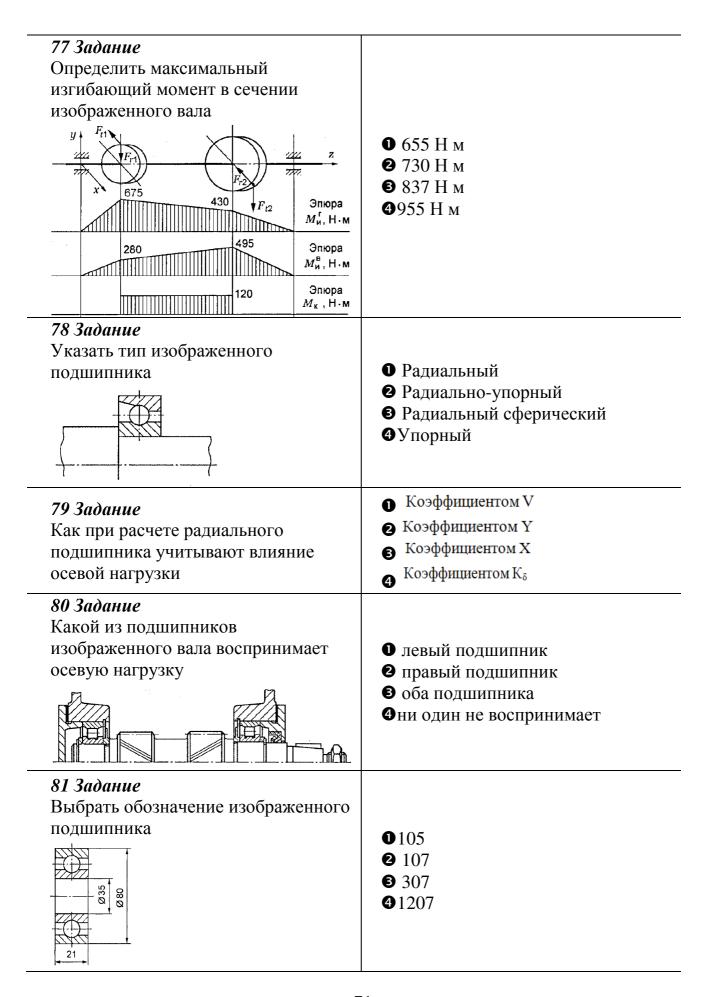


Какая нагрузка учитывается при проектировочном (предварительном) расчете вала?

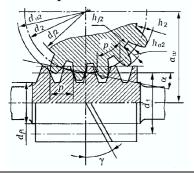
- lacktriangle Изгибающий момент $M_{\mathtt{u}}$
- Крутящий момент М_к
- $\mathbf{3}$ Эквивалентный момент $\sqrt{M_{\it H}^2 + M_{\it K}^2}$
- Суммарный момент $M_{\tt u} + M_{\tt K}$

75 Задание


Определить максимальный изгибающей момент в сечении вала


- **1**32 H M
- **2** 146,5 H м
- **3** 204 H M
- **Ф**315,4 Н м

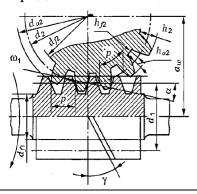
76 Задание


Для чего используют выделенный цветом элемент конструкции вала

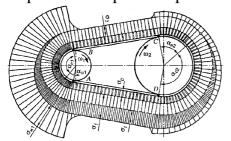
- Для осевой фиксации колеса
- 2Для центрирования колеса на валу
- ЭДля удобства сборки
- **4**Для передачи вращающего момента от вала на колесо или наоборот

Определить межосевое расстояние, если z1 = 2; z2 = 32; коэффициент диаметра червяка 16; модуль передачи 4 мм. Полученную величину сопоставить со стандартным значением

- **1**00 мм
- **2** 1258 мм
- **6** 140 мм
- **4** 160 mm

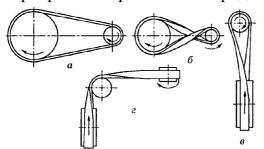

83 Задание

Определить передаточное отношение червячной передачи, если число заходов червяка 2; модуль передачи 2 мм; коэффициент диаметра червяка 8; диаметр делительной окружности червячного колеса 96 мм


- **0** 6
- **2**4
- **6** 48
- **4** 12

84 Задание

Выбрать формулу для расчета межосевого расстояния червячной передачи

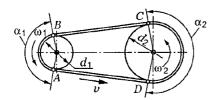

Выбрать формулу для расчета напряжения в ремне правее точки С

- $\begin{array}{l} \bullet \ \, \sigma = \sigma_2^{} + \sigma_2^{} + \sigma_{M1}^{} \\ \bullet \ \, \sigma = \sigma_1^{} + \sigma_v^{} + \sigma_{M1}^{} \\ \bullet \ \, \sigma = \sigma_2^{} + \sigma_v^{} + \sigma_{M2}^{} \\ \bullet \ \, \sigma = \sigma_1^{} + \sigma_v^{} + \sigma_{M2}^{} \\ \end{array}$

86 Задание

Каково основное назначение перекрестных ременных передач

- Увеличение долговечности
- 2 Увеличение межосевого расстояния
- **3** Увеличение угла обхвата
- **4** Вращение валов навстречу друг другу

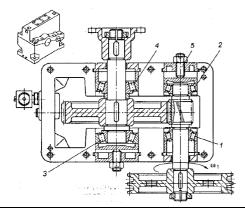

87 Задание

Определить диаметр меньшего шкива, если диаметр большего шкива $d_2 = 210$ мм; частота вращения ведущего вала $n_1 = 945 \text{ мин}^{-1}$; частота вращения ведомого вала $n_2 = 540$ мин 1; скольжение в передаче не учитывать

- **1**10 мм
- **2** 112 мм
- **6** 120 мм
- **4** 140 mm

88 Задание

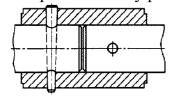
Определить угловую скорость ведомого шкива ременной передачи, если диаметры шкивов $d_1 = 80$ мм и $d_2 = 250$ мм; линейная скорость ремня 6 м/с; коэффициент скольжения в передаче 0,03



- **О** 150 рад/с
- **2** 3,125 рад/с
- **3** 76,5 рад/с
- **4** 46,56 рад/с

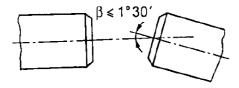
89 Задание Определить фактическое передаточное отношение ременной передачи, если диаметр ведущего **0** 0,4 шкива d1 = 315 мм; диаметр **2**,49 ведомого шкива d2 = 785 мм; 6 коэффициент скольжения в передаче 2.09 0,02 4 2,54 90 Задание Определить окружное усилие, передаваемое цепью, если мощность **0** 800 H на ведущем валу цепной передачи 8,5 **2** 1180 H кВт; диаметр ведущей звездочки 100 **3** 2360 H мм; угловая скорость ведомого вала **4**722 H 18 рад/с; передаточное число передачи 4 91 Задание Через какую деталь крепления подшипников передается осевое **1** Через левую крышку 1 усилие Fa на корпус редуктора? **2** Через правую крышку 4 Использовать рисунок вала с **3** Через левую втулку 2 указанным направлением усилия **4** Через левое кольцо 3 92 Задание Какую нагрузку может воспринимать изображенный подшипник • радиальную 2 радиальную и осевую **3** осевую • осевую и радиальную

93 Задание Какую нагрузку может воспринимать • осевую изображенный подшипник 2 радиальную 3 радиальную и небольшую осевую • значительные радиальную и осевую нагрузки 94 Задание Объяснить назначение детали 5 редуктора • передача вращающего момента 2 передача осевого усилия на корпус редуктора 3 удержание смазочного материала • упрощение сборки 95 Задание Как быстроходный вал изображенного одноступенчатого редуктора соединяется с валом электродвигателя? • с помощью муфты 2 с помощью зубчатой передачи 3 с помощью ременной передачи • с помощью цепной передачи


Каково назначение винта 5

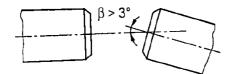
- облегчение разборки узла
- **2** облегчение смазывания подшипников
- **3** регулировка подшипников
- ответить невозможно

97 Задание

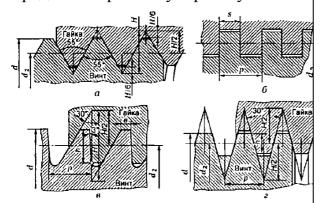

Указать основное назначение изображенной муфты

- Соединение валов с радиальным смещением
- **2** Соединение валов с осевым смещением
- **3** Жесткое постоянное соединение валов без смещения
- ◆ Соединение валов с угловым смещением

98 Задание


Какую муфту выбрать, если необходимо соединить валы с перекосами

- кулачковую
- 2 втулочно-пальцевую
- **3** зубчатую
- фланцевую


99 Задание

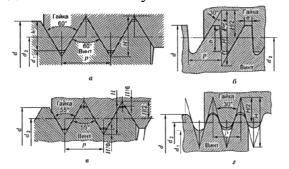
Какую из перечисленных муфт можно использовать для соединения валов, установленных под углом друг к другу?

- Упругую втулочно-пальцевую
- 2 Зубчатую компенсирующую
- **3** Шарнирную
- Многодисковую фрикционную

Среди представленных на рисунке определить крепежную резьбу

- a
- 6
- B
- Γ

101 Задание


Выбрать резьбу, нарезаемую на стандартных крепежных деталях

- a
- б
- B
- **Φ** Γ

102 Задание

Выбрать резьбу, применяемую для преобразования вращательного движения в поступательное

- a
- б
- B
- Γ

103 Задание Определить основные параметры шлицевого соединения 8 х 62 х 68 ГОСТ 1139-80	 ● 68 - внутренний диаметр; 8 - число зубьев ● 62 - внутренний диаметр; 68 - наружный диаметр; 8 - число зубьев ● 62 - наружный диаметр; 6 - число зубьев ● 6 - высота зуба; 8 - число зубьев; 62 - внутренний диаметр
104 Задание	• призматическая с креплением на
Какая шпонка может быть	валу
установлена в изображённом	призматическая
соединении?	3 сегментная
	клиновая
105 Задание	Шлицевое прямобочное с
Какое соединение изображено на	центрированием по d
рисунке	Шлицевое прямобочное с
A Company of the Comp	центрированием по D
	3 Шлицевое эвольвентное
	Шлицевое прямобочное с
$\frac{d}{d} \frac{D}{D}$	центрированием по b
106 Задание	0 a
Какую форму углового шва следует	2 б
выбрать для ответственного	❸ B
нахлесточного соединения,	4 Γ
работающего при переменных	
нагрузках?	

Ключ к тестовому материалу

№ задания	№ ответа	№ задания	№ ответа	№ задания	№ ответа
1	2	2	2	3	3
4	1	5	3	6	4
7	1	8	2	9	4
10	3	11	3	12	3
13	4	14	2	15	2
16	2	17	2	18	2
19	4	20	1	21	2
22	1	23	2	24	1
25	2	26	4	27	1
28	1	29	2	30	4
31	3	32	4,5	33	4
34	4	35	4	36	3
37	3	38	2	39	2
40	4	41	3	42	2
43	4	44	3	45	3
46	2	47	4	48	3
49	1	50	1	51	4
52	4	53	4	54	3
55	2	56	3	57	2
58	2	59	3	60	4
61	2	62	3	63	3
64	3	65	2	66	3
67	4	68	3	69	4
70	3	71	2	72	1
73	2	74	2	75	3
76	4	77	4	78	2
79	2	80	4	81	2
82	1	83	1	84	3
85	3	86	4	87	3
88	4	89	4	90	2
91	2	92	1	93	1
94	4	95	3	96	3
97	3	98	3	99	2
100	1	101	2	102	2
103	2	104	4	105	2
106	3				

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
ВВЕДЕНИЕ	5
	8
	8
1.2. Зубчатые передачи 1	0
1.3. Основные геометрические и кинематические параметры	1
1 4 Расчет на контактную прочность пилинлрической	3
15 Силы лействующие в запеллении пилинлрической	5
1 6. Лопускаемые контактные напряжения при расчете на	6
1 7 Лопускаемые напряжения изгиба при расчете	8
1.8. Конические зубчатые передачи ²	0
1.9. Материалы и термообработка, применяемые в зубчатых передачах2	:3
1.10. Червячные передачи	.5
1.11. Ременные передачи	0
1.12. Цепные передачи	5
1.13. Фрикционные передачи ³	6
Глава 2 ВАЛЫ И ОСИ	8
2.1. Проектный расчет валов ³	8
2.2. Расчет валов на изгиб и кручение (проверочный расчет)	9
2.3. Подшипники качения4	.3
2.4. Расчет подшипников качения ⁴	4
2.5. Определение приведенной нагрузки ⁴	.4

2.6. Муфты	45
Глава 3. СОЕДИНЕНИЯ	47
3.1. Сварные соединения	47
3.2. Расчет сварных швов	47
3.3. Основные случаи нагружения сварных соединений	49
3.4. Резьбовые соединения	50
3.5. Момент трения в резьбе	51
3.6. КПД винтовой пары	52
3.7. Расчет стержня затянутого болта	52
3.8. Расчет резьбы на срез и смятие	52
3.9. Распределение нагрузки по виткам резьбы	53
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	55
ПРИЛОЖЕНИЕ	56

Учебное пособие

РОДИОНОВ Леонид Федорович ПИДОДНЯ Владимир Григорьевич

Основы деталей машин

Редакторы:

E.C. Захарова И. А. Назарова

Подписано в печать 28.10.15 г. Формат 60х84 1/16. Бумага офсетная Усл. п. л. 5 Уч.-изд. л. 3,2 Тираж 100 экз. Рег. № 8/15sf

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет» 443100, г. Самара, ул. Молодогвардейская, 244. Главный корпус

Отпечатано в типографии Самарского государственного технического университета Филиал в г. Сызрани, 446001, г. Сызрань, ул. Советская 45